Mesenchymal stem cell (MSC) therapies demonstrate particular promise in ameliorating diseases of immune dysregulation but are hampered by short in vivo cell persistence and inconsistencies in phenotype. Here, we demonstrate that biomaterial encapsulation into alginate using a microfluidic device could substantially increase in vivo MSC persistence after intravenous (i.v.) injection. A combination of cell cluster formation and subsequent cross-linking with polylysine led to an increase in injected MSC half-life by more than an order of magnitude. These modifications extended persistence even in the presence of innate and adaptive immunity-mediated clearance. Licensing of encapsulated MSCs with inflammatory cytokine pretransplantation increased expression of immunomodulatory-associated genes, and licensed encapsulates promoted repopulation of recipient blood and bone marrow with allogeneic donor cells after sublethal irradiation by a ∼2-fold increase. The ability of microgel encapsulation to sustain MSC survival and increase overall immunomodulatory capacity may be applicable for improving MSC therapies in general.
Mesenchymal stromal cells (MSCs) modulate immune cells to ameliorate multiple inflammatory pathologies. Biophysical signals that regulate this process are poorly defined. By engineering hydrogels with tunable biophysical parameters relevant to bone marrow where MSCs naturally reside, we show that soft extracellular matrix maximizes the ability of MSCs to produce paracrine factors that have been implicated in monocyte production and chemotaxis upon inflammatory stimulation by tumor necrosis factor–α (TNFα). Soft matrix increases clustering of TNF receptors, thereby enhancing NF-κB activation and downstream gene expression. Actin polymerization and lipid rafts, but not myosin-II contractility, regulate mechanosensitive activation of MSCs by TNFα. We functionally demonstrate that human MSCs primed with TNFα in soft matrix enhance production of human monocytes in marrow of xenografted mice and increase trafficking of monocytes via CCL2. The results suggest the importance of biophysical signaling in tuning inflammatory activation of stromal cells to control the innate immune system.
Advances in engineered hydrogels reveal how cells sense and respond to 3D biophysical cues. However, most studies rely on interfacing a population of cells in a tissue-scale bulk hydrogel, an approach that overlooks the heterogeneity of local matrix deposition around individual cells. A droplet microfluidic technique to deposit a defined amount of 3D hydrogel matrices around single cells independently of material composition, elasticity, and stress relaxation times is developed. Mesenchymal stem cells (MSCs) undergo isotropic volume expansion more rapidly in thinner gels that present an Arg-Gly-Asp integrin ligand. Mathematical modeling and experiments show that MSCs experience higher membrane tension as they expand in thinner gels. Furthermore, thinner gels facilitate osteogenic differentiation of MSCs. By modulating ion channels, it is shown that isotropic volume expansion of single cells predicts intracellular tension and stem cell fate. The results suggest the utility of precise microscale gel deposition to control single cell functions. Cells utilize tactile mechanisms to physically probe the extracellular matrix. [1] Advances in the design of engineered hydrogels have revealed that various matrix biophysical properties are sufficient to impact cellular functions independently of changes in biochemical cues, including matrix elasticity, [2,3] degradation, [4] and stress relaxation. [5] As a result, cells exert traction forces on
Significance Current therapies for pulmonary fibrosis (PF) focus on slowing disease progression and reducing functional decline in patients by dampening the activation of fibroblasts and other implicated cells. There is a need for strategies that target the essential cells and signaling pathways involved in disease pathogenesis. Monocyte-derived macrophages (Mo-Macs) are known to express profibrotic genes and are involved in the pathogenesis of PF. Our results show that engineered mannosylated albumin nanoparticles specifically targeted disease-inducing Mo-Macs, and further, that nanoparticles efficiently delivered small-interfering RNA against profibrotic cytokine tumor growth factor β1 to prevent bleomycin-induced lung fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.