Electrospinning is a simple and versatile technique of producing polymeric fibers ranging from submicron to micron in diameter. Incorporation of bioactive agents into the fibers could make a biofunctional tissue engineering scaffold. In this study, we investigated the feasibility of encapsulating human beta-nerve growth factor (NGF), which was stabilized in a carrier protein, bovine serum albumin (BSA) in a copolymer of epsilon-caprolactone and ethyl ethylene phosphate (PCLEEP) by electrospinning. Partially aligned protein encapsulated fibers were obtained and the protein was found to be randomly dispersed throughout the electrospun fibrous mesh in aggregate form. A sustained release of NGF via diffusion process was obtained for at least 3 months. PC12 neurite outgrowth assay confirmed that the bioactivity of electrospun NGF was retained, at least partially, throughout the period of sustained release, thus clearly demonstrating the feasibility of encapsulating proteins via electrospinning to produce biofunctional tissue scaffolds.
Peripheral nerve regeneration can be enhanced by the stimulation of formation of bands of Büngner prior to implantation. Aligned electrospun poly(ε-caprolactone) (PCL) fibers were fabricated to test their potential to provide contact guidance to human Schwann cells. After 7 days of culture, cell cytoskeleton and nuclei were observed to align and elongate along the fiber axes, emulating the structure of bands of Büngner. Microarray analysis revealed a general down-regulation in expression of neurotrophin and neurotrophic receptors in aligned cells as compared to cells seeded on twodimensional PCL film. Real-time-PCR analyses confirmed the up-regulation of early myelination marker, MAG, and the down-regulation of NCAM-1, a marker of immature Schwann cells. Similar gene expression changes were also observed on cells cultured on randomly-oriented PCL electrospun fibers. However, up-regulation of the myelin-specific gene, P0, was observed only on aligned electrospun fibers, suggesting the propensity of aligned fibers in promoting Schwann cell maturation.
Sustained release of proteins from aligned polymeric fibers holds great potential in tissue-engineering applications. These protein-polymer composite fibers possess high surface-area-to-volume ratios for cell attachment, and can provide biochemical and topographic cues to enhance tissue regeneration. Aligned biodegradable polymeric fibers that encapsulate human glial cell-derived neurotrophic factor (GDNF, 0.13 wt%) were fabricated via electrospinning a copolymer of caprolactone and ethyl ethylene phosphate (PCLEEP) with GDNF. The protein was randomly dispersed throughout the polymer matrix in aggregate form, and released in a sustained manner for up to two months. The efficacy of these composite fibers was tested in a rat model for peripheral nerve-injury treatment. Rats were divided into four groups, receiving either empty PCLEEP tubes (control); tubes with plain PCLEEP electrospun fibers aligned longitudinally (EF-L) or circumferentially (EF-C); or tubes with aligned GDNF-PCLEEP fibers (EF-L-GDNF). After three months, bridging of a 15 mm critical defect gap by the regenerated nerve was observed in all the rats that received nerve conduits with electrospun fibers, as opposed to 50% in the control group. Electrophysiological recovery was seen in 20%, 33%, and 44% of the rats in the EF-C, EF-L, and EF-L-GDNF groups respectively, whilst none was observed in the controls. This study has demonstrated that, without further modification, plain electrospun fibers can help in peripheral nerve regeneration; however, the synergistic effect of an encapsulated growth factor facilitated a more significant recovery. This study also demonstrated the novel use of electrospinning to incorporate biochemical and topographical cues into a single implant for in vivo tissue-engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.