: The year 2020 was the most challenging period for all due to the havoc caused by the outbreak of novel coronavirus SARS-CoV-2. Scientists and researchers all around the world have endeavored every possible approach to find solutions in context to therapeutics and vaccines to control the spread of this life-threatening virus. The acceleration instigated by the outbreak of SARS-CoV-2 and its mutated strains has leveraged the use of numerous platform technologies for the development of vaccines against this unfathomable disease. Vaccines could play an important role in mitigating the effects of COVID-19 and reducing the ongoing health crisis. Various innovative platforms like proteins, nucleic acids, viruses, and viral vectors have been exploited to fabricate vaccines depicting almost 90% of efficacy like BNT162b2, AZD1222, Ad5-nCoV, etc. Some of these vaccines are multipotent and have shown potent activity against newly emerged malicious strains of SARS-CoV-2 like B.1.351andB.1.1.7. In this review article, we have gathered key findings from various sources of recently popularized vaccine candidates which will provide an overview of potential vaccine candidates against this virus and will help the researchers to investigate possible ways to annihilate this menace and design new moieties.
Background: Luliconazole is a broad-spectrum antifungal agent with impactful fungicidal and fungistatic activity. It has shown exceptional potency against miscellaneous fungal strains like Candida, Aspergillus, Malassezia, Fusarium species and various dermatophytes. Objective: Luliconazole belongs to class Ⅱ of the Biopharmaceutical Classification System with low aqueous solubility. Although it is available conventionally as 1% w/v topical cream, it has limitations of lower skin permeation and shorter skin retention. Therefore, nanoformulations based on various polymers and nanostructure carriers can be employed to overcome the impediments regarding topical delivery and efficacy of luliconazole. Methods: In this review, we have tried to provide insight into the literature gathered from authentic web resources and research articles regarding recent research conducted on the subject of formulation development, patents, and future research requisites of luliconazole. Results: Nanoformulations can play a fundamental role in improving topical delivery by escalating dermal localization and skin penetration. Fabricating luliconazole into nanoformulations can overcome the drawbacks and can efficiently enhance its antimycotic activity. Conclusion: It has been concluded that luliconazole has exceptional potential in the treatment of various fungal infections, and therefore, it should be exploited to its maximum for its innovative application in the field of mycology.
The present study is focused on the use of solid dispersion technology to triumph over the solubility-related problems of bexarotene which is currently used for treating various types of cancer and has shown potential inhibitory action on COVID-19 main protease and human ACE2 receptors. It is based on comparison of green locust bean gum and synthetic poloxamer as polymers using extensive mechanistic methods to explore the mechanism behind solubility enhancement and to find suitable concentration of drug to polymer ratio to prepare porous 3 rd generation solid dispersion. The prepared solid dispersions were characterized using different studies like X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), differential scanning calorimetry (DSC), and particle size analysis in order to determine the exact changes occurred in the product which are responsible for enhancing solubility profiles of an insoluble drug. The results showed different profiles for particle size, solubility, dissolution rate, porosity, BET, and Langmuir specific surface area of prepared solid dispersions by using different polymers. In addition to the comparison of polymers, the BET analysis deeply explored the changes occurred in all dispersions when the concentration of polymer was increased. The optimized solid dispersion prepared with MLBG using lyophilization technique showed reduced particle size of 745.7±4.4 nm, utmost solubility of 63.97%, pore size of 211.597 Å, BET and Langmuir specific surface area of 5.6413 m 2 /g and 8.2757 m 2 /g, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.