Successful management of the dairy industry is closely related to rearing healthy calves. The proper development of the gastrointestinal canal is crucial to reach this goal. One of the strategies to promote this development is the addition of feed additives to the diet. This research aimed to determine the impact of prebiotic inulin and a new, not commercially available synbiotic (mix of prebiotic inulin and probiotic S. cerevisiae strain 1026) on the development of the gastrointestinal canal of calves by comparing the weight of the stomach, its relative ratio to body weight and evaluating pH, and histological changes in different parts of the gastrointestinal canal and assess whether or not the addition of inulin to the yeast S. cerevisiae improves the abovementioned parameters. We used prebiotic inulin (6 g) and a synbiotic (prebiotic inulin 6 g and probiotic Saccharomyces cerevisiae strain 1026, 5 g). The 56-day long research was conducted with fifteen crossbreed calves (32 ± 6 days old) organized in the control group (CoG), the prebiotic group (PreG), and the synbiotic group (SynG). We determined pH, morphological parameters of different parts of the digestive canal, and morphometric parameters of the stomach. The addition of prebiotic inulin to calves’ diet causes the increase of pH in rumen, abomasum, and intestines but when inulin was added to S. cerevisiae, pH decreased and was even lower than in the control group. Prebiotic inulin and its synbiotic with yeast S. cerevisiae positively impact the development of almost all morphological structures of rumen saccus dorsalis, rumen saccus ventralis, and intestine; moreover, calves from the synbiotic group showed better results in virtually all parameters. However, both inulin and synbiotic did not affect the weight and relative weight of different parts of the stomach. Tested synbiotic has the potential to promote the development of the rumen and other parts of the digestive canal of calves.
Methane is considered to be the main greenhouse gas (GHG) emitted by livestock. One method for reducing methane emissions from ruminants is to improve production efficiency, which reduces methane emissions per unit of product (FAO, 2010; Gworgwor, Mbahi, & Yakubu, 2006). There are many researches about prebiotics which can reduce methane production in livestock, for example, galacto-oligosaccharides reduced methane emission up to 11% (liters/ day) (Zhou et al., 2004). There is almost no information about prebiotic inulin, so the aim of this research was to determine the impact of different dosages of inulin concentrate (50%) on the increase of calves' body weight and its impact on methane emission, as well as to find out how the results change if it is added to barley flour not to milk as in our previous research. Approximately fifty days old, clinically healthy, different Holstein Friesian crossbreed calves kept in groups of 8, in a partly closed space with a natural ventilation through windows were included in this research. Eight calves were in the control group (CoG) and sixteen received inulin (Pre12 (n = 8), Pre24 (n = 8)). At the beginning of the experiment-the 28 th and 56 th day-we determined each calf's weight and measured the methane level in the rumen by using the PICARROG-2508 gas analyser (Fleck, 2013). We concluded that inulin supplement significantly (p ≤ 0.05) increased the live weight gain comparing Pre24 and CoG. The highest methane production on 1 kg of body weight at the end of the research was detected in Pre24-1.24 mg m-3 and the lowest in CoG-0.99 mg m-3 .
Aim:The aim of the research was to evaluate the growth performance, to measure the amount of methane (CH4) and carbon dioxide (CO2) in calves’ rumen, and to compare the obtained results between the control group (CoG) and the experimental group (Pre12) which received the additional supplement of the prebiotic inulin.Materials and Methods:The research was conducted with ten Holstein Friesian (Bos taurus L.) crossbreed calves with an average age of 33±6 days. Calves were split into two groups: 5 calves that were fed with the control non-supplemented diet (CoG) and 5 calves that were fed with the same diet further supplemented with 12 g of flour of Jerusalem artichoke (Helianthus tuberosus L.) containing 6 g of prebiotic inulin per 0.5 kg of barley flour diet (Pre12). The duration of the experiment was 56 days. CH4 and CO2 were measured using cavity ringdown spectroscopy device Picarro G2508. The weight and samples from calves’ rumen were evaluated 3 times during the experimental period - on the 1st, 28th, and 56th days. Samples were obtained by puncturing the calf rumen.Results:The weight gain (kg) during the whole experimental period was higher in the Pre12 (65.8±6.57) compared to CoG (36.8±7.98) calves (p<0.001). The daily weight gain was also increased in the Pre12 (1.2±0.12) than CoG (0.7±0.14) calves (p<0.001). There was no difference in the levels of CH4 and CO2 produced in the rumen of CoG and Pre12 calves (p>0.05).Conclusion:The main results showed that the prebiotic inulin can promote weight gain in calves, without affecting the mean concentration of CH4 and CO2 in calves’ rumen.
Ruminants produce a large amount of methane (CH 4) and carbon dioxide (CO 2) in their foregut. These gases cause greenhouse effect. There are a lot of studies about different feed additives which can reduce the production of greenhouse gases in ruminants. Prebiotics can also change the amount of bacteria in animal gastrointestinal tract and reduce the occurrence of diarrhoea. The aim of this study was to test whether the prebiotic inulin affects the production of CH 4 and CO 2 in calves' rumen and whether it affects the bacteria count in the rumen fluid and bacterial overgrowth in intestines. We used the flour of Jerusalem artichoke (Helianthus tuberosus L.) containing 50% of inulin. Approximately fifty days old, Holstein Friesian crossbreed calves were used in this study. Eight were in the control group, 8 received 12 g of flour and 8 received 24 g per day. On the 28 th and 56 th day of the research, we measured the amount of CH 4 and CO 2 in calves' rumen, took rumen fluid samples for bacterial analysis and urine to measure the level of phenol and indican. We concluded that adding the flour of Jerusalem artichoke at doses 12 g and 24 g did not significantly impact the production of CH 4 and CO 2 in calves' rumen, the prebiotic inulin may suppress the growth of anaerobic microorganisms in the rumen at concentration 12 g of inulin reaching 56 th day of experiment. The amount of phenol and indican in calves' morning urine did not correlate with the faecal consistency of calves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.