Freezing of gait (FoG) is a common gait deficit in advanced Parkinson's disease (PD). FoG events are associated with falls, interfere with daily life activities and impair quality of life. FoG is often resistant to pharmacologic treatment; therefore effective non-pharmacologic assistance is needed.We propose a wearable assistant, composed of a smartphone and wearable accelerometers, for online detection of FoG. The system is based on machine learning techniques for automatic detection of FoG episodes. When FoG is detected, the assistant provides rhythmic auditory cueing or vibrotactile feedback that stimulates the patient to resume walking.We tested our solution on more than 8h of recorded lab data from PD patients that experience FoG in daily life. We characterize the system performance on user-dependent and user-independent experiments, with respect to different machine learning algorithms, sensor placement and preprocessing window size. The final system was able to detect FoG events with an average sensitivity and specificity of more than 95%, and mean detection latency of 0.34s in user-dependent settings.
Freezing of gait (FOG) is a disabling symptom that is common among patients with advanced Parkinson’s disease (PD). External cues such as rhythmic auditory stimulation can help PD patients experiencing freezing to resume walking. Wearable systems for automatic freezing detection have been recently developed. However, these systems detect a FOG episode after it has happened. Instead, in this study, a new approach for the prediction of FOG (before it actually happens) is presented. Prediction of FOG might enable preventive cueing, reducing the likelihood that FOG will occur. Moreover, understanding the causes and circumstances of FOG is still an open research problem. Hence, a quantitative characterization of movement patterns just before FOG (the pre-FOG phase) is of great importance. In this study, wearable inertial sensors were used to identify and quantify the characteristics of gait during the pre-FOG phase and compare them with the characteristics of gait that do not precede FOG. The hypothesis of this study is based on the threshold-based model of FOG, which suggests that before FOG occurs, there is a degradation of the gait pattern. Eleven PD subjects were analyzed. Six features extracted from movement signals recorded by inertial sensors showed significant differences between gait and pre-FOG. A classification algorithm was developed in order to test if it is feasible to predict FOG (i.e., detect it before it happens). The aim of the classification procedure was to identify the pre-FOG phase. Results confirm that there is a degradation of gait occurring before freezing. Results also provide preliminary evidence on the feasibility of creating an automatic algorithm to predict FOG. Although some limitations are present, this study shows promising findings for characterizing and identifying pre-FOG patterns, another step toward a better understanding, prediction, and prevention of this disabling symptom.
Freezing of gait (FoG) is a common gait impairment among patients with advanced Parkinson's disease. FoG is associated with falls and negatively impacts the patient's quality of life. Wearable systems that detect FoG in real time have been developed to help patients resume walking by means of rhythmic cueing. Current methods focus on detection, which require FoG events to happen first, while their prediction opens the road to preemptive cueing, which might help subjects to avoid freeze altogether. We analyzed electrocardiography (ECG) and skin-conductance (SC) data from 11 subjects who experience FoG in daily life, and found statistically significant changes in ECG and SC data just before the FoG episodes, compared to normal walking. Based on these findings, we developed an anomaly-based algorithm for predicting gait freeze from relevant SC features. We were able to predict 71.3% from 184 FoG with an average of 4.2 s before a freeze episode happened. Our findings enable the possibility of wearable systems, which predict with few seconds before an upcoming FoG from SC, and start external cues to help the user avoid the gait freeze.
People with Parkinson's disease (PD) suffer from declining mobility capabilities, which cause a prevalent risk of falling. Commonly, short periods of motor blocks occur during walking, known as freezing of gait (FoG). To slow the progressive decline of motor abilities, people with PD usually undertake stationary motor-training exercises in the clinics or supervised by physiotherapists. We present a wearable system for the support of people with PD and FoG. The system is designed for independent use. It enables motor training and gait assistance at home and other unsupervised environments. The system consists of three components. First, FoG episodes are detected in real time using wearable inertial sensors and a smartphone as the processing unit. Second, a feedback mechanism triggers a rhythmic auditory signal to the user to alleviate freeze episodes in an assistive mode. Third, the smartphone-based application features support for training exercises. Moreover, the system allows unobtrusive and long-term monitoring of the user's clinical condition by transmitting sensing data and statistics to a telemedicine service.We investigate the at-home acceptance of the wearable system in a study with nine PD subjects. Participants deployed and used the system on their own, without any clinical support, at their homes during three protocol sessions in 1 week. Users' feedback suggests an overall positive attitude toward adopting and using the system in their daily life, indicating that the system supports them in improving their gait. Further, in a data-driven analysis with sensing data from five participants, we study whether there is an observable effect on the gait during use of the system. In three out of five subjects, we observed a decrease in FoG duration distributions over the protocol days during gait-training exercises. Moreover, sensing data-driven analysis shows a decrease in FoG duration and FoG number in four out of five participants when they use the system as a gait-assistive tool during normal daily life activities at home. . 2015. A wearable assistant for gait training for Parkinson's disease with freezing of gait in out-of-the-lab environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.