A novel method based on atomic force microscopy (AFM) working in Ringing mode (RM) to distinguish between two similar human colon epithelial cancer cell lines that exhibit different degrees of neoplastic aggressiveness is reported on. The classification accuracy in identifying the cell line based on the images of a single cell can be as high as 94% (the area under the receiver operating characteristic [ROC] curve is 0.99). Comparing the accuracy using the RM and the regular imaging channels, it is seen that the RM channels are responsible for the high accuracy. The cells are also studied with a traditional AFM indentation method, which gives information about cell mechanics and the pericellular coat. Although a statistically significant difference between the two cell lines is also seen in the indentation method, it provides the accuracy of identifying the cell line at the single‐cell level less than 68% (the area under the ROC curve is 0.73). Thus, AFM cell imaging is substantially more accurate in identifying the cell phenotype than the traditional AFM indentation method. All the obtained cell data are collected on fixed cells and analyzed using machine learning methods. The biophysical reasons for the observed classification are discussed.
Background In late March 2020, state and local governments across the country issued stay-at-home directives to slow the spread of COVID-19. However, divergent messages from political parties on the severity of COVID-19 and differing levels of support of these social distancing measures have potentially prompted differential behaviors across political groups. This study examines state-level partisan differences in changes in human mobility during stay-at-home orders. Methods Aggregated and de-identified large-scale human mobility data was collected from Cuebiq, a mobility insights platform, to measure the fraction of users that staying at home. A difference-in-difference analysis was performed to evaluate the changes in human mobility before and after stay-at-home orders were implemented by state political afflictions. Results Before March 19th, 2020, there was a 0.82% difference (SE=0.003, p<0.001) between the percent of users staying at home in republican states versus democratic states. Difference-in-difference analysis revealed that on average, democratic states experienced a 4.11% (SE = 0.006, p<0.001) greater increase in the percent of users that stayed at home compared to republican states pre-post the implementation of stay-at-home orders. States that were not issued state-wide stay-at-home orders were excluded from the study. Conclusion Evidence supports the differential changes in adherence to stay-at-home orders by state political affiliation. These results suggest that political messaging may be a strong factor in influencing social distancing behaviors.
Public awareness of calories in food sold in retail establishments is a primary objective of the menu labeling law. This study explores the extent to which we can use social media and internet search queries to understand whether the federal calorie labeling law increased awareness of calories. To evaluate the association of the federal menu labeling law with tweeting about calories we retrieved tweets that contained the term “calorie(s)” from the CompEpi Geo Twitter Database from 1 January through 31 December in 2016 and 2018. Within the same time period, we also retrieved time-series data for search queries related to calories via Google Trends (GT). Interrupted time-series analysis was used to test whether the federal menu labeling law was associated with a change in mentions of “calorie(s)” on Twitter and relative search queries to calories on GT. Before the implementation of the federal calorie labeling law on 7 May 2018, there was a significant decrease in the baseline trend of 4.37 × 10−8 (SE = 1.25 × 10−8, p < 0.001) mean daily ratio of calorie(s) tweets. A significant increase in post-implementation slope of 3.19 × 10−8 (SE = 1.34 × 10−8, p < 0.018) mean daily ratio of calorie(s) tweets was seen compared to the pre-implementation slope. An interrupted time-series (ITS) analysis showed a small, statistically significant upward trend of 0.0043 (SE = 0.036, p < 0.001) weekly search queries for calories pre-implementation, with no significant level change post-implementation. There was a decrease in trend of 1.22 (SE = 0.27, p < 0.001) in search queries for calories post-implementation. The federal calorie labeling law was associated with a 173% relative increase in the trend of mean daily ratio of tweets and a −28381% relative change in trend for search queries for calories. Twitter results demonstrate an increase in awareness of calories because of the addition of menu labels. Google Trends results imply that fewer people are searching for the calorie content of their meal, which may no longer be needed since calorie information is provided at point of purchase. Given our findings, discussions online about calories may provide a signal of an increased awareness in the implementation of calorie labels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.