Excessive exposure to fluoride results in structural and functional damages to the central nervous system (CNS), and neurotoxicity of fluoride may be associated with neurodegenerative changes. Chronic microglial activation appears to cause neuronal damage through producing proinflammatory cytokines and is involved in many neurodegenerative disorders. It is not known about effects on microglia of fluoride. In the present study, healthy adult Wistar rats were exposed to 60 and 120 ppm fluoride in drinking water for 10 weeks, and control rats received deionized water. After 10 weeks, rats were sacrificed under anesthesia then apoptosis in neuron and inflammatory factors secreted by microglia were determined. We found that apoptosis of neurons in fluoride-treated rat brain increased and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive immunofluorescence increased with increasing fluoride concentrations. Bax protein expression increased and Bcl-2 protein expression decreased in fluoride-treated rat brain compared with that of the control rat brain. The microglia in the hippocampus and cortex of fluoride-treated rats were activated by immunostaining with OX-42, a marker of activated microglia, and OX-42-positive microglia cells were more abundant in the hippocampus than in the cortex. The levels of IL-1β and IL-6 protein expression in OX-42-labeled microglial cells were significantly increased in the cortex and hippocampus of rats exposed to fluoride, and TNF-α immunoreactivity in microglial cells of the hippocampus was significantly higher in the 120 ppm fluoride-treated group than that in the control group. Our results indicate that fluoride induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain.
Dimethylarsinic acid (DMAV) is the main product of arsenic methylation metabolism in vivo and is rat bladder carcinogen and tumor promoting agent. In this study, we measured the expressions of mRNA and proteins of NF-κB pathway members, IKKα, IKKβ, p65, and p50 in rat bladder epithelium by qRT-PCR and immunohistochemical analysis after rats received drinking water containing 100 and 200 ppm DMAV for 10 weeks. Transforming growth factor-β (TGF-β) immunoexpression in rat bladder epithelium and urine level of IL-1β also were determined. We found that DMAV dramatically increased the mRNA levels of NF-κB p50 and IKKα in the bladder epithelium of rats compared to the control group. Immunohistochemical examinations showed that DMAV increased immunoreactivities of IKKα, IKKβ, and phospho-NF-κB p50 in the cytoplasm and phospho-NF-κB p50 and p65 in nucleus of rat urothelial cells. In addition, DMAV treated rats exhibited significantly increased inflammatory factor TGF-β immunoreactivity in bladder epithelium and IL-1β secretion in urine. These data suggest that DMAV could activate NF-κB signal pathway and increase TGF-β and IL-1β expressions in bladder epithelial cells of rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.