Humor is a special human expression style, an important “lubricant” for daily communication for people; people can convey emotional messages that are not easily expressed through humor. At present, artificial intelligence is one of the popular research domains; “discourse understanding” is also an important research direction, and how to make computers recognize and understand humorous expressions similar to humans has become one of the popular research domains for natural language processing researchers. In this paper, a humor recognition model (MLSN) based on current humor theory and popular deep learning techniques is proposed for the humor recognition task. The model automatically identifies whether a sentence contains humor expression by capturing the inconsistency, phonetic features, and ambiguity of a joke as semantic features. The model was experimented on three publicly available wisecrack datasets and compared with state-of-the-art language models, and the results demonstrate that the proposed model has better humor recognition accuracy and can contribute to the research on discourse understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.