Our aim was to determine whether the long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in
Mycoplasma pneumoniae
pneumonia (MPP), and its possible mechanism of action. MALAT1 expression in the bronchoalveolar lavage fluid of 50 hospitalized children with MPP was compared to its expression in 30 children with intrabronchial foreign bodies. MALAT1 expression was higher in children with MPP, accompanied by increased inflammatory mediators interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α), compared to the controls. In human airway epithelial cells infected with wild-type
Mycoplasma pneumoniae
(strain M129), MALAT1, IL-8, and TNF-α expression significantly increased, and increased expression of IL-8 and TNF-α could be suppressed by MALAT1 knockdown. Luciferase reporter gene assay and western blot showed that knockdown of MALAT1 reduced nuclear factor-κB (NF-κB) activation.
In vivo
, RNAi packaged with adenovirus (Adv) was nasally transfected into BALB/c mice to silence MALAT1, and an MP-infected mouse pneumonia model was prepared. The results demonstrated that the degree of pulmonary inflammatory injury, vascular permeability, secretion of inflammatory factors, and expression of phosphorylated p65 (pp65) in MP-infected mice were partly reversed after MALAT1 knockdown compared to those in the controls. In conclusion, MALAT1 is involved in the regulation of airway and pulmonary inflammation caused by MP infection via NF-κB regulation.
Now there is no clinical scale for early prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP). The aim of this study is to identify indicators and develop an early predictive scale for RMPP in hospitalized children. First we conducted a retrospective cohort study of children with M. pneumoniae pneumonia admitted to Children’s Hospital of Nanjing Medical University, China in 2016. Children were divided into two groups, according to whether their pneumonia were refractory and the results were used to develop an early predictive scale. Second we conducted a prospective study to validate the predictive scale for RMPP in children in 2018. 618 children were included in the retrospective study, of which 73 with RMPP. Six prognostic indicators were identified and included in the prognostic assessment scale. The sensitivity of the prognostic assessment scale was 74.0% (54/73), and the specificity was 88.3% (481/545) in the retrospective study. 944 children were included in the prospective cohort, including 92 with RMPP, the sensitivity of the prognostic assessment scale was 78.3% (72/92) and the specificity was 86.2% (734/852). The prognostic assessment scale for RMPP has high diagnostic accuracy and is suitable for use in standard clinical practice.
Asthma is an inflammatory disease of the airways, characterized by lung eosinophilia, mucus hypersecretion by goblet cells and airway hyper-responsiveness to inhaled allergens. The present study aimed to identify the function of microRNA (miR/miRNA)-106b-5p in TGF-β1-induced pulmonary fibrosis and epithelial-mesenchymal transition (EMT) via targeting sine oculis homeobox homolog 1 (SIX1) through regulation of E2F transcription factor 1 (E2F1) in asthma. Asthmatic mouse models were induced with ovalbumin. miRNA expression was evaluated using reverse transcription-quantitative PCR. Transfection experiments using bronchial epithelial cells were performed to determine the target genes. A luciferase reporter assay system was applied to identify the target gene of miR-106b-5p. The present study revealed downregulated miR-106b-5p expression and upregulated SIX1 expression in asthmatic mice and TGF-β1-induced BEAS-2B cells. Moreover, miR-106b-5p overexpression inhibited TGF-β1-induced fibrosis and EMT in BEAS-2B cells, while miR-106b-5p-knockdown produced the opposite effects. Subsequently, miR-106b-5p was found to regulate SIX1 through indirect regulation of E2F1. Additionally, E2F1- and SIX1-knockdown blocked TGF-β1-induced fibrosis and EMT in BEAS-2B cells. In addition, miR-106b-5p negatively regulated SIX1 via E2F1 in BEAS-2B cells. The present study demonstrated that the miR-106b-5p/E2F1/SIX1 signaling pathway may provide potential therapeutic targets for asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.