Iodine uptake and translocation was studied in cabbage and tomato cultivated on different soil types (sand, sandy silt, silt) by applying irrigation water containing iodine at concentrations of 0.1 and 0.5 mg/L. Iodine treatment at the concentrations applied did not significantly influence the photosynthetic efficiency and chlorophyll concentration of cabbage and tomato leaves. The growth of cabbage leaves cultivated on sand and sandy silt soil with iodine treatment was slightly stimulated, while, on silt soil, it remained unchanged; for tomato plant parts, independent of the soil-type, the dry mass values remained constant. It can be concluded that iodine treatment had no negative effect on the physiological characteristic of cabbage and tomato plants. Applying 0.5 mg/L in the irrigation water, the highest biofortification with iodine was achieved in plants cultivated in sandy soil and the iodine concentration calculated in the dry matter amounted to 10 and 3.6 mg/kg in the leaves and fruits of cabbage and tomato, respectively. Considering the iodine and moisture content of cabbage leaves and tomato fruits, the consumption of 100 g of fresh vegetable would cover about 80% and 15% of the recommended iodine intake, respectively. The presence of iodine resulted in a reduction in Fe and P concentrations in tomato fruits independent of the soil-type; however, the concentration of Mg, Cu, Mn, Zn, and B remained practically unchanged. However, for cabbage, no similar trend for Fe and P was observed.
Accumulation of iodine by potato (Solanum tuberosum L.) and carrot (Daucus carota L. var. sativus) plants cultivated on different soils (sand, sandy silt, and silt) using irrigation water containing iodine at concentrations of 0.1 and 0.5 mg/L was investigated. In the edible organs of potato and carrot control plants grown on sand, sandy silt, and silt soils, the iodine concentrations were 0.15, 0.17, and 0.20 mg/kg (potato) and 0.012, 0.012, and 0.013 mg/kg (carrot); after the treatment by applying 0.5 mg/L iodine dosage, the iodine concentrations were 0.21, 0.19, 0.27 mg/kg (potato) and 3.5, 3.7, 3.0 mg/kg (carrot), respectively. Although the iodine treatment had no significant effect on the biomass production of these plants, in potato tubers, it resulted in higher Fe and lower Mg and P concentrations, whereas no similar trend was observable in carrot roots. The accumulation of Mn, Cu, Zn, and B in the edible part of both plants was not influenced by the iodine treatment. The soil properties did not have a significant impact on biomass production under the same environmental conditions. The concentration and the distribution of iodine in both plants were slightly modified by the growing medium; however, the photosynthetic efficiency and the chlorophyll content index of potato plants cultivated in silt soil increased significantly. Potato plant was not suitable for biofortification with iodine, while considering the iodine concentration and the moisture content of carrot roots, it can be calculated that consuming 100 g fresh carrot would cover about 38% of the daily iodine intake requirement for an average adult person.
Iodine uptake and translocation of uptake and lettuce (Lactuca sativa) and green bean (Phaseolus vulgaris L.) were investigated in a calcareous sandy soil-plant system. Green bean and lettuce plants were cultivated in calcareous candy soil applying irrigation water with the iodide concentration of 0.10, 0.25 and 0.50 mg/L. The growth of these plants was stimulated at the iodine concentration of 0.10 and 0.25 mg/L and hampered at 0.50 mg/L. In the edible parts of green bean and lettuce plants irrigated with 0.25 mg/L iodide containing water, the iodine concentration amounted to 0.6 and 5.2 mg/kg DW, respectively. In lettuce the uptake and translocation of micro and macro nutrients were also stimulated (20-260%) by iodide treatment, however, in green bean fruits this phenomenon was negligible. Considering the iodine (5.2 mg/kg DW) and water concentrations (81%) of the fresh lettuce leaves, the consumption of 100 g fresh vegetable covers about 66% of the recommended dietary allowance (150 μg), The green bean plants, due to their low iodine translocation from the roots to the fruits are not suitable for biofortification with iodine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.