Cancer stem cells (CSC) isolated from multiple tumor types differentiate in vivo and in vitro when cultured in serum; however, the factors responsible for their differentiation have not yet been identified. The first aim of the present study was to identify CD133high/CD44high DU145 prostate CSCs and compare their profiles with non-CSCs as bulk counterparts of the population. Subsequently, the two populations continued to be three-dimensional multicellular spheroids. Differentiation was then investigated with stem cell-related genomic characteristics. Polymerase chain reaction array analyses of cell cycle regulation, embryonic and mesenchymal cell lineage-related markers, and telomerase reverse transcriptase (TERT) and Notch signaling were performed. Immunohistochemistry of CD117, Notch1, Jagged1, Delta1, Sox2, c-Myc, Oct4, KLF4, CD90 and SSEA1 were determined in CSC and non-CSC monolayer and spheroid subcultures. Significant gene alterations were observed in the CD133high/CD44high population when cultured as a monolayer and continued as spheroid. In this group, marked gene upregulation was determined in collagen type 9 α1, Islet1 and cyclin D2. Jagged1, Delta-like 3 and Notch1 were respectively upregulated genes in the Notch signaling pathway. According to immunoreactivity, the staining density of Jagged1, Sox2, Oct4 and Klf-4 increased significantly in CSC spheroids. Isolated CSCs alter their cellular characterization over the course of time and exhibit a differentiation profile while maintaining their former surface antigens at a level of transcription or translation. The current study suggested that this differentiation process may be a mechanism responsible for the malignant process and tumor growth.
Background:The members of the transforming growth factor-B superfamily, as the bone morphogenetic proteins (BMPs) subfamily and anti-Müllerian hormone (AMH), play a role during follicular development, and the bone morphogenetic protein-2 (BMP2), AMH, and THY1 are expressed in ovaries.Aim:This study was designed to define whether or not the expressions of these proteins in human cumulus cells (CCs) can be used as predictors of the oocyte and embryo competence.Settings and Design:The study included nine female patients who were diagnosed as idiopathic infertility, aged 25–33 years (median 30 years) and underwent Assisted Reproductive Technologies.Materials and Methods:The CCs from 60 oocyte–cumulus complexes obtained from the nine patients were evaluated with immunofluorescence staining in respect of BMPs, AMH and THY1 markers. The CCs surrounding the same oocytes were evaluated separately according to the oocyte and embryo quality.Statistical Analysis:Quantitative data were statistically analyzed for differences using the two-sided Mann–Whitney U test (P < 0.05).Results and Conclusions:Significant differences in immunofluorescence staining were observed in oocyte quality and embryo quality for the BMP2 only (P < 0.05). No significant differences were observed for AMH or CD90/THY1.Conclusion:These results demonstrated that there is a significant difference in the expression of BMP2 in the CCs of good quality oocytes and subsequently a good embryo.
Objective This study was performed to explore the possibility that each oocyte and its surrounding cumulus cells might have different genetic expression patterns that could affect human reproduction. Methods Differential gene expression analysis was performed for 10 clusters of cumulus cells obtained from 10 cumulus-oocyte complexes from 10 patients. Same procedures related to oocyte maturation, microinjection, and microarray analyses were performed for each group of cumulus cells. Two differential gene expression analyses were performed: one for the outcome of clinical pregnancy and one for the outcome of live birth. Results Significant genes resulting from these analyses were selected and the top 20 affected pathways in each group were analyzed. Circadian entrainment is determined to be the most affected pathway for clinical pregnancy, and proteoglycans in cancer pathway is the most affected pathway for live birth. Circadian entrainment is also amongst the 12 pathways that are found to be in top 20 affected pathways for both outcomes, and has both lowest p -value and highest number of times found count. Conclusion Although further confirmatory studies are necessary, findings of this study suggest that these pathways, especially circadian entrainment in cumulus cells, may be essential for embryo development and pregnancy.
Background. The aim of this study is to determine the effects of zinc and/or progesterone via the expression of αvβ5 integrins and Vitronectins and embryonic stem cell markers during the peri-implantation period. Methods. Four experimental groups were organized. All subjects were mated with males of the same strain to induce pregnancy; after 5 days, zinc and/or progesterone were administered. Blood levels of zinc and progesterone were determined on the sixth day and endometrial tissues were obtained in order to evaluate the immunohistochemical expression of integrins and embryonic stem cell markers. Results. The αvβ5 integrin and vitronectin expression increased in the zinc group compared with the control group and no difference in the progesterone group and zinc + progesterone group. Expression of Klf-4, Sox-2, and c-Myc was found to be increased in the zinc group compared to controls, while no difference was determined between the progesterone, zinc + progesterone, and control groups. Distinctively, expression of the embryonic stem cell marker Oct-4 was increased in all of the experimental groups. Conclusions. Expression of αvβ5 integrin, vitronectin, and embryonic stem cell markers might be increased by the administration of zinc. Our results suggest that zinc could be useful in the induction of implantation rates.
The expression of putative stem cell markers in the OSE was verified and stem cell receptor activity was raised in the OSE and ovarian stromal cells by zinc and progesterone. Thus, this increased expression allows the therapeutic use of zinc and progesterone in ovary-related infertility and brings a different perspective to reproductive medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.