ObjectiveIn order to provide reference for clinicians and bring convenience to clinical work, we seeked to develop and validate a risk prediction model for lymph node metastasis (LNM) of Ewing’s sarcoma (ES) based on machine learning (ML) algorithms.MethodsClinicopathological data of 923 ES patients from the Surveillance, Epidemiology, and End Results (SEER) database and 51 ES patients from multi-center external validation set were retrospectively collected. We applied ML algorithms to establish a risk prediction model. Model performance was checked using 10-fold cross-validation in the training set and receiver operating characteristic (ROC) curve analysis in external validation set. After determining the best model, a web-based calculator was made to promote the clinical application.ResultsLNM was confirmed or unable to evaluate in 13.86% (135 out of 974) ES patients. In multivariate logistic regression, race, T stage, M stage and lung metastases were independent predictors for LNM in ES. Six prediction models were established using random forest (RF), naive Bayes classifier (NBC), decision tree (DT), xgboost (XGB), gradient boosting machine (GBM), logistic regression (LR). In 10-fold cross-validation, the average area under curve (AUC) ranked from 0.705 to 0.764. In ROC curve analysis, AUC ranged from 0.612 to 0.727. The performance of the RF model ranked best. Accordingly, a web-based calculator was developed (https://share.streamlit.io/liuwencai2/es_lnm/main/es_lnm.py).ConclusionWith the help of clinicopathological data, clinicians can better identify LNM in ES patients. Risk prediction models established in this study performed well, especially the RF model.
Objective
The aim of this study was to establish and validate a clinical prediction model for assessing the risk of metastasis and patient survival in Ewing's sarcoma (ES).
Methods
Patients diagnosed with ES from the Surveillance, Epidemiology and End Results (SEER) database for the period 2010-2016 were extracted, and the data after exclusion of vacant terms was used as the training set (n=767). Prediction models predicting patients' overall survival (OS) at 1 and 3 years were created by cox regression analysis and visualized using Nomogram and web calculator. Multicenter data from four medical institutions were used as the validation set (n=51), and the model consistency was verified using calibration plots, and receiver operating characteristic (ROC) verified the predictive ability of the model. Finally, a clinical decision curve was used to demonstrate the clinical utility of the model.
Results
The results of multivariate cox regression showed that age, , bone metastasis, tumor size, and chemotherapy were independent prognostic factors of ES patients. Internal and external validation results: calibration plots showed that the model had a good agreement for patient survival at 1 and 3 years; ROC showed that it possessed a good predictive ability and clinical decision curve proved that it possessed good clinical utility.
Conclusions
The tool built in this paper to predict 1- and 3-year survival in ES patients (https://drwenleli0910.shinyapps.io/EwingApp/) has a good identification and predictive power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.