Summary Wheat (Triticum aestivum) is one of the most important crops worldwide. Given a growing global population coupled with increasingly challenging cultivation conditions, facilitating wheat breeding by fine‐tuning important traits is of great importance. MADS‐box genes are prime candidates for this, as they are involved in virtually all aspects of plant development. Here, we present a detailed overview of phylogeny and expression of 201 wheat MIKC‐type MADS‐box genes. Homoeolog retention is significantly above the average genome‐wide retention rate for wheat genes, indicating that many MIKC‐type homoeologs are functionally important and not redundant. Gene expression is generally in agreement with the expected subfamily‐specific expression pattern, indicating broad conservation of function of MIKC‐type genes during wheat evolution. We also found extensive expansion of some MIKC‐type subfamilies, especially those potentially involved in adaptation to different environmental conditions like flowering time genes. Duplications are especially prominent in distal telomeric regions. A number of MIKC‐type genes show novel expression patterns and respond, for example, to biotic stress, pointing towards neofunctionalization. We speculate that conserved, duplicated and neofunctionalized MIKC‐type genes may have played an important role in the adaptation of wheat to a diversity of conditions, hence contributing to the importance of wheat as a global staple food.
MADS-box genes are key regulators of virtually every aspect of plant reproductive development. They play especially prominent roles in flowering time control, inflorescence architecture, floral organ identity determination, and seed development. The developmental and evolutionary importance of MADS-box genes is widely acknowledged. However, their role during flowering plant domestication is less well recognized. Here, we provide an overview illustrating that MADS-box genes have been important targets of selection during crop domestication and improvement. Numerous examples from a diversity of crop plants show that various developmental processes have been shaped by allelic variations in MADS-box genes. We propose that new genomic and genome editing resources provide an excellent starting point for further harnessing the potential of MADS-box genes to improve a variety of reproductive traits in crops. We also suggest that the biophysics of MADS-domain protein-protein and protein-DNA interactions, which is becoming increasingly well characterized, makes them especially suited to exploit coding sequence variations for targeted breeding approaches.
Mineral nutrient supply can affect the hydraulic property of roots. The aim of the present work on sheepgrass (Leymus chinensis L.) plants was to test whether any changes in root hydraulic conductivity (Lp; exudation analyses) in response to a growth‐limiting supply of phosphate (P) are accompanied by changes in (1) cell Lp via measuring the cell pressure, (2) the aquaporin (AQP) gene expression by performing qPCR and (3) the formation of apoplastic barriers, by analyzing suberin lamella and Casparian bands via cross‐sectional analyses in roots. Plants were grown hydroponically on complete nutrient solution, containing 250 µM P, until they were 31–36 days old, and then kept for 2–3 weeks on either complete solution, or transferred on solution containing 2.5 µM (low‐P) or no added P (no‐P). Phosphate treatments caused significant decreases in root and cell‐Lp and AQP gene expression, while the formation of apoplastic barriers increased, particularly in lateral roots. Experiments using the AQP inhibitor mercury (Hg) suggested that a significant portion of radial root water uptake in sheepgrass occurs along a path involving AQPs, and that the Lp of this path is reduced under low‐ and no‐P. It is concluded that a growth‐limiting supply of phosphate causes parallel changes in (1) cell Lp and aquaporin gene expression (decrease) and (2) apoplastic barrier formation (increase), and that the two may combine to reduce root Lp. The reduction in root Lp, in turn, facilitates an increased root‐to‐shoot surface area ratio, which allocates resources to the root, sourcing the limiting nutrient.
BackgroundWheat (Triticum aestivum) is one of the most important crops worldwide. Given a growing global population coupled with increasingly challenging climate and cultivation conditions, facilitating wheat breeding by fine-tuning important traits such as stress resistance, yield and plant architecture is of great importance. Since they are involved in virtually all aspects of plant development and stress responses, prime candidates for improving these traits are MIKC-type (type II) MADS-box genes.ResultsWe present a detailed overview of number, phylogeny, and expression of 201 wheat MIKC-type MADS-box genes, which can be assigned to 15 subfamilies. Homoeolog retention is significantly above the average genome-wide retention rate for wheat genes, indicating that many MIKC-type homoeologs are functionally important and not redundant. Gene expression is generally in agreement with the expected subfamily-specific expression pattern, indicating broad conservation of function of MIKC-type genes during wheat evolution.We find the extensive expansion of some MIKC-type subfamilies to be correlated with their chromosomal location and propose a link between MADS-box gene duplications and the adaptability of wheat. A number of MIKC-type genes encode for truncated proteins that lack either the DNA-binding or protein-protein interaction domain and occasionally show novel expression patterns, possibly pointing towards neofunctionalization.ConclusionsConserved and neofunctionalized MIKC-type genes may have played an important role in the adaptation of wheat to a diversity of conditions, hence contributing to its importance as a global staple food. Therefore, we propose that MIKC-type MADS-box genes are especially well suited for targeted breeding approaches and phenotypic fine tuning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.