Purpose We describe the “double zipper” mechanism of human male urethral formation, where the distal zipper opens the urethral groove through canalization of the urethral plate, and a second closing zipper follows behind and closes the urethral groove to form the tubular urethra. Materials and Methods Anonymous human fetal genital specimens were acquired and gender was determined by polymerase chain reaction of the Y chromosome. Specimens were processed for optical projection tomography, stained with E-cadherin, Ki67 and caspase 3, and imaged. Results Eight developing male fetal specimens from 6.5 to 16.5 weeks of gestation were analyzed by optical projection tomography, and an additional 5 specimens by serial sections. Phallus length ranged from 1.3 to 3.7 mm. The urethral plate canalized into a groove with 2 epithelial edges that subsequently fused. Ki67 staining was localized to the dorsal aspect of the urethral plate. In contrast, caspase 3 staining was not observed. The entire process was completed during a 10-week period. Conclusions The human male urethra appears to form by 2 mechanisms, an initial “opening zipper” that facilitates distal canalization of the solid urethral plate to form the urethral groove, which involves a high rate of epithelial proliferation (apoptosis not observed), and a “closing zipper” facilitating fusion of the 2 epithelial surfaces of the urethral groove, and thus extending the penile urethra distally. Improved knowledge of the molecular mechanisms of these processes is critical to understanding mechanisms of abnormal urethral development, such as hypospadias.
Purpose We characterized the early gestation development of the female external genitalia using optical projection tomography to visualize anatomical structures at high resolution. Materials and Methods First and early second trimester human female fetal external genitalia were collected with consent after voluntary termination. Specimens labeled with anti-E-Cadherin antibody underwent analysis with optical projection tomography. Histological sections were immunostained for androgen receptor, 5α-reductase, Ki67 for proliferation and Caspase 3 for apoptosis. Results Three-dimensional reconstructions demonstrated proximal to distal canalization of the epithelial vestibular plate and formation of a vestibular groove, which remained open. Ki67 was observed throughout with greatest density in the dorsal vestibular plate at the level of the opening groove. Staining for Caspase 3 was minimal in all sections. Androgen receptor staining was seen throughout the mesenchyme and in the apical epithelium of the dorsal vestibular groove. Throughout the epithelium and epidermis 5α-reductase staining was observed. Conclusions Early development of the external genitalia in the female is analogous to that in the male, demonstrating a similar opening zipper driving canalization of the vestibular plate with localized epithelial proliferation in the absence of significant apoptosis. Thus we hypothesize that the mechanism underlying the opening zipper must be androgen independent and the absence of androgen driven urethral fusion characterizes the normal development of the human clitoris.
Alphaviruses are mosquito-transmitted RNA viruses that cause important diseases in both humans and livestock. Sindbis virus (SIN), the type species of the alphavirus genus, carries a 11.7-kb positive-sense RNA genome which is capped at its 5′ end and polyadenylated at its 3′ end. The 3′ nontranslated region (3′NTR) of the SIN genome carries many AU-rich motifs, including a 19-nucleotide (nt) conserved element (3′CSE) and a poly(A) tail. This 3′CSE and the adjoining poly(A) tail are believed to regulate the synthesis of negative-sense RNA and genome replication in vivo. We have recently demonstrated that the SIN genome lacking the poly(A) tail was infectious and that de novo polyadenylation could occur in vivo (K. R. Hill, M. Hajjou, J. Hu, and R. Raju, J. Virol. 71:2693–2704, 1997). Here, we demonstrate that the 3′-terminal 29-nt region of the SIN genome carries a signal for possible cytoplasmic polyadenylation. To further investigate the polyadenylation signals within the 3′NTR, we generated a battery of mutant genomes with mutations in the 3′NTR and tested their ability to generate infectious virus and undergo 3′ polyadenylation in vivo. Engineered SIN genomes with terminal deletions within the 19-nt 3′CSE were infectious and regained their poly(A) tail. Also, a SIN genome carrying the poly(A) tail but lacking a part or the entire 19-nt 3′CSE was also infectious. Sequence analysis of viruses generated from these engineered SIN genomes demonstrated the addition of a variety of AU-rich sequence motifs just adjacent to the poly(A) tail. The addition of AU-rich motifs to the mutant SIN genomes appears to require the presence of a significant portion of the 3′NTR. These results indicate the ability of alphavirus RNAs to undergo 3′ repair and the existence of a pathway for the addition of AU-rich sequences and a poly(A) tail to their 3′ end in the infected host cell. Most importantly, these results indicate the ability of alphavirus replication machinery to use a multitude of AU-rich RNA sequences abutted by a poly(A) motif as promoters for negative-sense RNA synthesis and genome replication in vivo. The possible roles of cytoplasmic polyadenylation machinery, terminal transferase-like enzymes, and the viral polymerase in the terminal repair processes are discussed.
The dihalomethane CH(2)Cl(2) is an industrial solvent of potential concern to humans because of its potential genotoxicity and carcinogenicity. To characterize DNA damage by dihalomethanes, a rapid DNA digestion under acidic conditions was developed to identify alkali labile DNA-dihalomethane nucleoside adducts using HPLC-electrospray mass spectrometry. DNA digestion worked best using pH 5.0 sodium acetate buffer, a 30 min incubation with DNase II and phosphodiesterase II, and a 2 h acid phosphatase digest. DNA was modified with S-(1-acetoxymethyl)glutathione (GSCH(2)OAc), a reagent modeling activated dihalomethanes. Adducts to G, A, and T were detected at high ratios of GSCH(2)OAc/DNA following digestion of the DNA with the procedure used here. The relative efficacy of adduct formation was G > T > A >> C. The four DNA nucleosides were also reacted with the dihalomethanes CH(2)Cl(2) and CH(2)Br(2) in the presence of glutathione (GSH) and GSH S-transferases from bacteria (DM11), rat (GST 5-5), and human (GST T1-1) under conditions that produce mutations in bacteria. All enzymes formed adducts to all four nucleosides, with dGuo being the most readily modified nucleoside. Thus, the pattern paralleled the results obtained with the model compounds GSCH(2)OAc and DNA. CH(2)Cl(2) and CH(2)Br(2) yielded similar amounts of adducts under these conditions. The relative efficiency of adduct formation by GSH transferases was rat 5-5 > human T1-1 > bacterial DM11, showing that human GSH transferase T1-1 can form dihalomethane adducts under the conditions used. Although the lability of DNA adducts has precluded more sophisticated experiments and in vivo studies have not yet been possible, the work collectively demonstrates the ability of several GSH transferases to generate DNA adducts from dihalomethanes, with G being the preferred site of adduction in both this and the GSCH(2)OAc model system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.