The objectives of this study were to determine rDNA sequences of the most common Dinophysis species in Scandinavian waters and to resolve their phylogenetic relationships within the genus and to other dinoflagellates. A third aim was to examine the intraspecific variation in D. acuminata and D. norvegica, because these two species are highly variable in both morphology and toxicity. We obtained nucleotide sequences of coding (small subunit [SSU], partial large subunit [LSU], 5.8S) and noncoding (internal transcribed spacer [ITS]1, ITS2) parts of the rRNA operon by PCR amplification of one or two Dinophysis cells isolated from natural water samples. The three photosynthetic species D. acuminata, D. acuta, and D. norvegica differed in only 5 to 8 of 1802 base pairs (bp) within the SSU rRNA gene. The nonphotosynthetic D. rotundata (synonym Phalacroma rotundatum[Claparède et Lachmann] Kofoid et Michener), however, differed in approximately 55 bp compared with the three photosynthetic species. In the D1 and D2 domains of LSU rDNA, the phototrophic species differed among themselves by 3 to 12 of 733 bp, whereas they differed from D. rotundata by more than 100 bp. This supports the distinction between Dinophysis and Phalacroma. In the phylogenetic analyses based on SSU rDNA, all Dinophysis species were grouped into a common clade in which D. rotundata diverged first. The results indicate an early divergence of Dinophysis within the Dinophyta. The LSU phylogenetic analyses, including 4 new and 11 Dinophysis sequences from EMBL, identified two major clades within the phototrophic species. Little or no intraspecific genetic variation was found in the ITS1–ITS2 region of single cells of D. norvegica and D. acuminata from Norway, but the delineation between these two species was not always clear.
Dinophysis and Phalacroma species containing diarrheic shellfish toxins and pectenotoxins occur in coastal temperate waters all year round and prevent the harvesting of mussels during several months each year in regions in Europe, Chile, Japan, and New Zealand. Toxicity varies among morphologically similar species, and a precise identification is needed for early warning systems. Molecular techniques using ribosomal DNA sequences offer a means to identify and detect precisely the potentially toxic species. We designed molecular probes targeting the 18S rDNA at the family and genus levels for Dinophysis and Phalacroma and at the species level for Dinophysis acuminata, Dinophysis acuta, and Dinophysis norvegica, the most commonly occurring, potentially toxic species of these genera in Western European waters. Dot blot hybridizations with polymerase chain reaction (PCR)-amplified rDNA from 17 microalgae were used to demonstrate probe specificity. The probes were modified along with other published fluorescence in situ hybridization and PCR probes and tested for a microarray platform within the MIDTAL project (http://www.midtal.com). The microarray was applied to field samples from Norway and Spain and compared to microscopic cell counts. These probes may be useful for early warning systems and monitoring and can also be used in population dynamic studies to distinguish species and life cycle stages, such as cysts, and their distribution in time and space.Electronic supplementary materialThe online version of this article (doi:10.1007/s11356-012-1403-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.