SummaryThe hepatitis C virus (HCV) is a major etiologic agent for severe liver diseases (e.g. cirrhosis, fibrosis and hepatocellular carcinoma). Approximately 140 million people have chronic HCV infections and about 500 000 die yearly from HCV‐related liver pathologies. To date, there is no licensed vaccine available to prevent HCV infection and production of a HCV vaccine remains a major challenge. Here, we report the successful production of the HCV E1E2 heterodimer, an important vaccine candidate, in an edible crop (lettuce, Lactuca sativa) using Agrobacterium‐mediated transient expression technology. The wild‐type dimer (E1E2) and a variant without an N‐glycosylation site in the E2 polypeptide (E1E2∆N6) were expressed, and appropriate N‐glycosylation pattern and functionality of the E1E2 dimers were demonstrated. The humoral immune response induced by the HCV proteins was investigated in mice following oral administration of lettuce antigens with or without previous intramuscular prime with the mammalian HEK293T cell‐expressed HCV dimer. Immunization by oral feeding only resulted in development of weak serum levels of anti‐HCV IgM for both antigens; however, the E1E2∆N6 proteins produced higher amounts of secretory IgA, suggesting improved immunogenic properties of the N‐glycosylation mutant. The mice group receiving the intramuscular injection followed by two oral boosts with the lettuce E1E2 dimer developed a systemic but also a mucosal immune response, as demonstrated by the presence of anti‐HCV secretory IgA in faeces extracts. In summary, our study demonstrates the feasibility of producing complex viral antigens in lettuce, using plant transient expression technology, with great potential for future low‐cost oral vaccine development.
Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virusderived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single-and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgenederived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated.
Euphorbia pulcherrima, poinsettia, is a non-food and non-feed vegetatively propagated ornamental plant. Appropriate plant height is one of the most important traits in poinsettia production and is commonly achieved by application of chemical growth retardants. To produce compact poinsettia plants with desirable height and reduce the utilization of growth retardants, the Arabidopsis SHORT INTERNODE (AtSHI) gene controlled by the cauliflower mosaic virus 35S promoter was introduced into poinsettia by Agrobacterium-mediated transformation. Three independent transgenic lines were produced and stable integration of transgene was verified by PCR and Southern blot analysis. Reduced plant height (21–52%) and internode lengths (31–49%) were obtained in the transgenic lines compared to control plants. This correlates positively with the AtSHI transcript levels, with the highest levels in the most dwarfed transgenic line (TL1). The indole-3-acetic acid (IAA) content appeared lower (11–31% reduction) in the transgenic lines compared to the wild type (WT) controls, with the lowest level (31% reduction) in TL1. Total internode numbers, bract numbers and bract area were significantly reduced in all transgenic lines in comparison with the WT controls. Only TL1 showed significantly lower plant diameter, total leaf area and total dry weight, whereas none of the AtSHI expressing lines showed altered timing of flower initiation, cyathia abscission or bract necrosis. This study demonstrated that introduction of the AtSHI gene into poinsettia by genetic engineering can be an effective approach in controlling plant height without negatively affecting flowering time. This can help to reduce or avoid the use of toxic growth retardants of environmental and human health concern. This is the first report that AtSHI gene was overexpressed in poinsettia and transgenic poinsettia plants with compact growth were produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.