This paper presents a study of correlation between subjects of Diploma in Electrical Engineering (Electronics/Power) at Universiti Teknologi MARA(UiTM) Cawangan Terengganu using Artificial Neural Network (ANN). The analysis was done to see the effect of mathematical subjects (Pre-calculus and Calculus 1) and core subject (Electric Circuit 1) on Electronics 1. Electronics 1 is found to be a core subject with the history of high failure rate percentage (more than 25%) in previous semesters. This research has been conducted on current final semester students (Semester 5). Seven (7) models of ANN are developed to observe the correlation between the subjects. In order to develop an ANN model, ANN design and parameters need to be chosen to find the best model. In this study, historical data from students’ database were used for training and testing purpose. Total number of datasets used are 58 sets. 70% of the datasets are used for training process and 30% of the datasets are used for testing process. The Regression Coefficient, (R) values from the developed models was observed and analyzed to see the effect of the subject on the performance of students. It can be proven that Electric Circuit 1 has significant correlation with the Electronics 1 subject respected to the highest R value obtained (0.8100). The result obtained proves that student’s understanding on Electric Circuit 1 subject (taken during semester 2) has direct impact on the performance of students on Electronics 1 subject (taken during semester 3). Hence, early preventive measures could be taken by the respective parties.
Keywords: Artificial neural network, Diploma in Electrical Engineering, Graduate on time, Correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.