The potential of natural fibers as one of the candidate materials in the production of fiber-reinforced polymer composites have been widely investigated. In the current study, natural fiber-reinforced polymer composite was fabricated by employing woven kenaf fiber as a reinforcing agent with epoxy resin that acts as a matrix constituent. This composite sample was fabricated using the application of the vacuum infusion method in which the content of kenaf fibers was varied from 30 vol.%, 40 vol.%, and 50 vol.%. The effects of different fiber loadings toward mechanical and physical properties as well as failure properties of kenaf composite were then evaluated. Kenaf composites were subjected to mechanical tests including tensile and flexural tests. The result shows that the highest tensile strength and modulus were attained at 76.67 MPa and 2.31 GPa, respectively with kenaf composite fabricated with 40 vol.% fiber content. Meanwhile, the highest flexural strength and modulus were recorded at 61.24 MPa and 4.20 GPa, also corresponding to kenaf composite that is loaded with 40 vol.% fibers. Fiber pull-out failure was able to be detected in fabricated kenaf composites. Meanwhile, fiber breakage resulting from flexural failure could also be observed in the kenaf composite samples. Apart from that, it was found that as more kenaf fiber was loaded in the composites, the rate of water absorption tended to increase where the highest rate of water absorption was found at 43.33%, displayed by kenaf composite with 50 vol.% of fiber content. ABSTRAK: Potensi gentian semula jadi sebagai salah satu bahan dalam penghasilan komposit polimer bertetulang gentian telah banyak dikaji. Dalam kajian terkini, komposit polimer yang diperkuat dengan gentian semula jadi dibuat dengan menggunakan serat kenaf tenunan sebagai agen penguat dan resin epoksi yang bertindak sebagai matriks. Sampel komposit ini dibuat menggunakan kaedah infusi vakum di mana kandungan serat kenaf digunakan adalah 30 vol.%, 40 vol.%, dan 50 vol.%. Kesan kandungan serat yang berbeza terhadap sifat mekanikal dan fizikal serta sifat kegagalan komposit kenaf kemudiannya dinilai. Komposit Kenaf diuji dengan ujian tegangan dan lenturan. Hasilnya menunjukkan bahawa kekuatan tegangan dan modulus tertinggi dicapai pada 76.67 MPa dan 2.31 GPa, milik komposit kenaf yang dibuat dengan kandungan serat 40 vol.%. Sementara itu, kekuatan dan modulus lenturan tertinggi dicatatkan pada 61.24 MPa dan 4.20 GPa juga milik komposit kenaf yang dimuatkan dengan serat 40% vol. Kegagalan serat terkeluar dapat dikesan pada komposit kenaf buatan. Sementara itu, kerosakan serat akibat kegagalan lenturan juga dapat dilihat pada sampel komposit kenaf. Selain itu, didapati bahawa semakin banyak serat kenaf yang dimuatkan dalam komposit, cendurung meningkatkan kadar penyerapan air di mana kadar penyerapan air tertinggi didapati pada 43.33% yang ditunjukkan oleh komposit kenaf dengan kandungan serat 50% vol.
The awareness on sustainability of the environment among the researchers leads to the exploration of natural fiber composite materials. Hybridization of synthetic fiber and natural fiber is one of the potential strategies to enhance the mechanical properties as well as the degradability of such composite materials. However, less information concerning the optimization of tribological properties of this hybrid composite is available in literature. The aim of this study is to propose a statistical model to predict and optimize wear and coefficient of friction of kenaf/carbon reinforced epoxy composite. The value of parameters; load and sliding velocity ranges from 10 to 30 N and 20.9 to 52.3 m/s, respectively, are used to assess wear and coefficient of friction (COF) of different stacking sequences using the Analysis of Variance (ANOVA). The tribological test was conducted using a pin-on-disc tribometer. Multifactorial design analysis was employed to optimize the test control variables. It was found that, the optimized factors that affects the coefficient of friction and wear is at load 30 N and sliding velocity of 52.36 m/s. The proposed statistical models for wear and COF have 99.5% and 97.6% reliability, respectively. The generated equation models are bounded within the wear test control factors and ranges. The outcome from this study will be very useful for main parameter prediction for an optimized wear and COF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.