In general, starch-based biopolymer has low mechanical properties. Hence, various methods have been applied to enhance its properties as well as the incorporation of fibrous nanocellulose. The aim of this study is to enhance the mechanical properties of starch-based polymer by incorporating nanocellulose extracted from oil palm empty fruit bunch. The cellulose nanofibre was obtained by hydrolysing oil palm empty fruit bunch fibre with 64% sulphuric acid at 45°C for 90 minutes. It has diameter between 50 and 90 nm as shown by transmission electron microscopy image. In nanoreinforced starch-based packaging, the amount of nanocellulose loading was varied between 2 and 10% per weight of starch. The tensile strength of 2% cellulose nanofibre incorporated film was increased to 4·68 MPa, which is 28% higher than the tensile strength exhibited by the native starch-based film, 3·66 MPa. However, the tensile strength was reduced when cellulose nanofibre incorporation goes beyond 2%. The Young's modulus demonstrates the same pattern as tensile strength, where 2% of cellulose nanofibre gave the optimum results for Young's modulus value. Elongation percentage of nanobiocomposite film also reduced even at low cellulose nanofibre loading, 2%. Regardless of its drawback on elongation percentage, an addition of 2% of cellulose nanofibre is the finest ratio that could improve the mechanical properties of starch-based biopolymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.