Multicolor imaging, which maps the distribution of different targets, is important for in vivo molecular imaging and clinical diagnosis. Fluorine 19 magnetic resonance imaging ( 19 F MRI) is a promising technique because of unique insights without endogenous background or tissue penetration limit. Thus multicolor 19 F MRI probes, which can sense a wide variety of molecular species, are expected to help elucidate the biomolecular networks in complex biological systems. Here, a versatile model of activatable probes based on fluorinated ionic liquids (ILs) for multicolor 19 F MRI is reported. Three types of ILs at different chemical shifts are loaded in nanocarriers and sealed by three stimuli-sensitive copolymers, leading to "off" 19 F signals. The coating polymers specifically respond to their environmental stimuli, then degrade to release the loaded ILs, causing 19 F signals recovery. The nanoprobes are utilized for non-invasive detection of tumor hallmarks, which are distinguished by their individual colors in one living mouse, without interference between each other. This multicolor imaging strategy, which adopts modular construction of various ILs and stimuli-responsive polymers, will allow more comprehensive sensing of multiple biological targets, thus, opening a new realm in mechanistic understanding of complex pathophysiologic processes in vivo.
A total of 480 one-day-old AA broiler chicks were randomly allocated to one of four treatments in a 2 × 2 factorial to investigate the effects of tannic acid (TA) on growth performance, relative organ weight, antioxidant capacity, and intestinal health in broilers dietary exposed to aflatoxin B1 (AFB1). Treatments were as follows: (1) CON, control diet; (2) TA, CON + 250 mg/kg TA; (3) AFB1, CON + 500 μg/kg AFB1; and (4) TA+AFB1, CON + 250 mg/kg TA + 500 μg/kg AFB1. There were 10 replicate pens with 12 broilers per replicate. Dietary AFB1 challenge increased the feed conversion ratio during days 1 to 21 (P < 0.05). The TA in the diet did not show significant effects on the growth performance of broilers during the whole experiment period (P > 0.05). The liver and kidney relative weight was increased in the AF challenge groups compared with the CON (P < 0.05). The addition of TA could alleviate the relative weight increase of liver and kidney caused by AFB1 (P < 0.05). Broilers fed the AFB1 diets had lower activity of glutathione peroxidase, catalase, total superoxide dismutase, S-transferase, and total antioxidant capacity in plasma, liver and jejunum, and greater malondialdehyde content (P < 0.05). Dietary supplemented with 250 mg/kg TA increased the activities of antioxidative enzymes, and decreased malondialdehyde content (P < 0.05). In addition, AFB1 significantly reduced the villus height and crypt depth ratio in the ileum on day 42 (P < 0.05). In conclusion, supplementation with 250 mg/kg TA could partially protect the antioxidant capacity and prevent the enlargement of liver in broilers dietary challenged with 500 μg/kg AFB1.
Porcine epidemic diarrhea virus (PEDV) has become a challenging problem in pig industry all over the world, causing significant profit losses. Tannins and organic zinc have been shown to exert protective effects on the intestinal dysfunction caused by endotoxins. However, there is little information on tannic acid-chelated zinc (TAZ) supplementation in the diet of newborn piglets. This study was conducted to determine the effects of TAZ on the intestinal function of piglets infected with PEDV. Thirty-two 7-day-old piglets were randomly allocated to 1 of 4 treatments in a 2 × 2 factorial design consisting of 2 diets (0 or 50 mg/kg BW TAZ) and challenge (saline or PEDV). On day 9 of the trial, 8 pigs per treatment received either sterile saline or PEDV solution at 106 TCID50 (50% tissue culture infectious dose) per pig. Pigs infected with PEDV had greater diarrhea rate and lower average daily gain (ADG) (P < 0.05). PEDV infection decreased plasma D-xylose concentration, most antioxidative enzyme activities in plasma and intestine, as well as the small intestinal villus height (P < 0.05). Plasma diamine oxidase and blood parameters were also affected by PEDV infection. Dietary supplementation with TAZ could ameliorate the PEDV-induced changes in all measured variables (P < 0.05). Moreover, TAZ decreased the concentration of malondialdehyde in plasma, duodenum, jejunum, and colon (P < 0.05). Collectively, our results indicated that dietary TAZ could alleviate PEDV induced damage on intestinal mucosa and antioxidative capacity, and improve the absorptive function and growth in piglets. Therefore, our novel findings also suggest that TAZ, as a new feed additive for neonatal and weaning piglets, has the potential to be an alternative to ZnO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.