Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the collagen synthesis by activation of the NLRP3 inflammasome, leading to caspase‐1 activation, interleukin‐1β (IL‐1β) and IL‐18 secretion in neonatal rat cardiac fibroblasts. Moreover, we used a high‐glucose model with neonatal rat cardiac fibroblasts and showed that the activation of ROS and P2X7R was augmented and that ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation was critical for the collagen synthesis. Inhibition of ROS and P2X7R decreased NLRP3 inflammasome‐mediated collagen synthesis, similar to the effects of H3 relaxin. Furthermore, H3 relaxin reduced the collagen synthesis via ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation in response to HG. These results provide a mechanism by which H3 relaxin alleviates NLRP3 inflammasome‐mediated collagen synthesis through the inhibition of ROS and P2X7R under HG conditions and suggest that H3 relaxin represents a potential drug for alleviating cardiac fibrosis in diabetic cardiomyopathy.
Background/Aims: Apoptosis, fibrosis and NLRP3 inflammasome activation are involved in the development of diabetic cardiomyopathy (DCM). Human recombinant relaxin-3 (H3 relaxin) is a novel bioactive peptide that inhibits cardiac injury; however, whether H3 relaxin prevents cardiac injury in rats with DCM and the underlying mechanisms are unknown. Methods: To investigate the effect of H3 relaxin on DCM, we performed a study using H3 relaxin treatment in male Sprague-Dawley (SD) rats with streptozotocin (STZ)-induced diabetes (DM). We measured apoptosis, fibrosis and NLRP3 inflammasome markers in the rat hearts four and eight weeks after the rats were injected with STZ (65 mg/kg) by western blot analysis. Subsequently, 2 or 6 weeks after the STZ treatment, the rats were treated with H3 relaxin [2 µg/kg/d (A group) or 0.2 µg/kg/d (B group)] for 2 weeks. Cardiac function was evaluated by echocardiography to determine the extent of myocardial injury in the DM rats. The protein levels of apoptosis, fibrosis and NLRP3 inflammasome markers were used to assess myocardial injury. In addition, we determined the plasma levels of IL-1β and IL-18 using a Milliplex MAP Rat Cytokine/Chemokine Magnetic Bead Panel kit. Results: The protein expression of cleaved caspase-8, caspase-9 and caspase-3 as well as fibrosis markers increased at 4 and 8 weeks in the STZ-induced diabetic hearts compared with the levels in the control group. Furthermore, the NLRP3 inflammasome was substantially activated in STZ-induced diabetic hearts, leading to increased IL-1β and IL-18 levels. Compared with the DM group, the A group exhibited substantially better cardiac function. The protein levels of apoptosis markers were attenuated by H3 relaxin, indicating that H3 relaxin inhibited myocardial apoptosis in the hearts of diabetic rats. The protein expression of fibrosis markers was inhibited by H3 relaxin. Additionally, the protein expression and activation of the NLRP3 inflammasome were also effectively attenuated by H3 relaxin. Conclusions: This study is the first to demonstrate that H3 relaxin plays an anti-apoptotic, anti-fibrotic and anti-inflammatory role in DCM.
Increasing evidence suggests that the NLRP3 (nucleotide oligomerization domain-like receptor family, pyrin domain containing 3) inflammasome participates in cardiovascular diseases. However, its role and activation mechanism during hypertension remains unclear. In this study, we tested the role and mechanism of calcium-sensing receptor (CaSR) in NLRP3 inflammasome activation during hypertension. We observed that the expressions of CaSR and NLRP3 were increased in spontaneous hypertensive rats (SHRs) along with aortic fibrosis. In vascular smooth muscle cells (VSMCs), the activation of NLRP3 inflammasome associated with CaSR and collagen synthesis was induced by angiotensin II (Ang II). Furthermore, inhibition of CaSR and NLRP3 inflammasome attenuated proinflammatory cytokine release, suggesting that CaSR-mediated activation of the NLRP3 inflammasome may be a therapeutic target in aortic dysfunction and vascular inflammatory lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.