Fibroblast growth factor receptors (FGFRs) play key roles in promoting the proliferation, differentiation, and migration of cancer cell. Inactivation of FGFRs by tyrosine kinase inhibitors (TKI) has achieved great success in tumor-targeted therapy. However, resistance to FGFR-TKI has become a concern. Here, we review the mechanisms of FGFR-TKI resistance in cancer, including gatekeeper mutations, alternative signaling pathway activation, lysosome-mediated TKI sequestration, and gene fusion. In addition, we summarize strategies to overcome resistance, including developing covalent inhibitors, developing dual-target inhibitors, adopting combination therapy, and targeting lysosomes, which will facilitate the transition to precision medicine and individualized treatment.
FIIN-2, TAS-120 (Futibatinib) and PRN1371 are highly potent pan-FGFR covalent inhibitors targeting the p-loop cysteine of FGFR proteins, of which TAS-120 and PRN1371 are currently in clinical trials. It is critical to analyze their target selectivity and their abilities to overcome gatekeeper mutations. In this study, we demonstrate that FIIN-2 and TAS-120 form covalent adducts with SRC, while PRN1371 does not. FIIN-2 and TAS-120 inhibit SRC and YES activities, while PRN1371 does not. Moreover, FIIN-2, TAS-120 and PRN1371 exhibit different potencies against different FGFR gatekeeper mutants. In addition, the co-crystal structures of SRC/FIIN-2, SRC/TAS-120 and FGFR4/PRN1371 complexes reveal structural basis for kinase targeting and gatekeeper mutations. Taken together, our study not only provides insight into the potency and selectivity of covalent pan-FGFR inhibitors, but also sheds light on the development of next-generation FGFR covalent inhibitors with high potency, high selectivity, and stronger ability to overcome gatekeeper mutations.
The fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) signaling pathways play critical roles in a variety of cancers, such as hepatocellular carcinoma (HCC). FGFR4 is recognized as a promising target to treat HCC. Currently, all FGFR covalent inhibitors target one of the two cysteines (Cys477 and Cys552). Here, we designed and synthesized a dual-warhead covalent FGFR4 inhibitor, CXF-009, targeting Cys477 and Cys552 of FGFR4. We report the cocrystal structure of FGFR4 with CXF-009, which exhibits a dual-warhead covalent binding mode. CXF-009 exhibited stronger selectivity for FGFR4 than FGFR1-3 and other kinases. CXF-009 can also potently inhibit the single cystine mutants, FGFR4(C477A) and FGFR4(C552A), of FGFR4. In summary, our study provides a dual-warhead covalent FGFR4 inhibitor that can covalently target two cysteines of FGFR4. CXF-009, to our knowledge, is the first reported inhibitor that forms dual-warhead covalent bonds with two cysteine residues in FGFR4. CXF-009 also has the potential to overcome drug induced resistant FGFR4 mutations and might serve as a lead compound for future anticancer drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.