This study illustrates the influence of ionic liquid (IL)-microwave heating on the direct transesterification (in-situ transesterification) of wet Nannochloropsis sp. biomass to biodiesel. The ionic liquid used was 1-ethyl-3-me-thylimmidazolium methyl sulphate [EMIM][MeSO4]. Direct transesterification process variables such as the wet algae to methanol ratio, reaction time and methanol to IL ratio influencing the biodiesel production were optimised using response surface methodology (RSM). The results revealed that the maximum biodiesel yield(40.9%) was achieved when the ratio of wet algae to methanol (wt/vol) was kept at 1:4, methanol :IL ratio maintained at 1:0.5 at reaction time of 25 min. The FAMEs composition depicted a high content of unsaturated FAMEs suitable for biodiesel production. The synergetic effect of combining IL-methanol solvent and microwave heating at optimised reaction conditions enabled the production of an incredibly high biodiesel yield per dry biomass of 42.22%.
The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.