Wideband excitation and control of Fano resonance and electromagnetically induced transparency (EIT), both of which rely on coherent interaction between two excitation paths, is challenging. It requires precise control and tuning of interacting resonances or coupling between different resonant structures over a wide frequency range. Gain (Stokes) and absorption (anti-Stokes) resonances associated with the stimulated Brillouin scattering (SBS) process can be excited and controlled over a wide frequency range by tuning the pump frequency, its power and profile. We exploit coherent interaction between the Brillouin Stokes and anti-Stokes resonance, in radio frequency domain, to demonstrate Fano and EIT-like resonance over a wide frequency range and control their shape and strength optically and electrically. For the Fano resonance, the asymmetry and polarity are electrically controlled over an unprecedented frequency range (100 MHz–43 GHz) by varying the bias to the intensity modulator whereas, the strength is varied by tuning the Brillouin pump power and/or the bias. The depth and 3 dB linewidth of the transparency window in the EIT-like resonance are controlled using pump and probe parameters. The flexibility of the SBS process that allows wideband electrical and optical control of Fano and EIT-like resonance opens up the potential for applications that range from low-power switching, sensing to tunable RF delay.
We report Brillouin scattering gain in two novel Silicon-on-Insulator architectures – double slab and double-lobed waveguides. We show that the geometrical parameters influence the Brillouin gain and frequency shift, thereby offering flexibility to maximize gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.