Previous studies have shown that human prostate cancer cells constitutively generate 5-lipoxygenase (5-LOX) metabolites from arachidonic acid, and inhibition of 5-LOX blocks production of 5-LOX metabolites and triggers apoptosis in prostate cancer cells. This apoptosis is prevented by exogenous metabolites of 5-LOX, suggesting an essential role of 5-LOX metabolites in the survival of prostate cancer cells. However, downstream signaling mechanisms which mediate the survival-promoting effects of 5-LOX metabolites in prostate cancer cells are still unknown. Recently, we reported that MK591, a specific inhibitor of 5-LOX activity, induces apoptosis in prostate cancer cells without inhibition of Akt, or ERK, two well-characterized regulators of pro-survival mechanisms, suggesting the existence of an Akt and ERK-independent survival mechanism in prostate cancer cells regulated by 5-LOX. Here, we report that 5-LOX inhibition-induced apoptosis in prostate cancer cells occurs via rapid inactivation of protein kinase C-epsilon (PKCε), and that exogenous 5-LOX metabolites prevent both 5-LOX inhibition-induced down-regulation of PKCε and induction of apoptosis. Interestingly, pre-treatment of prostate cancer cells with diazoxide (a chemical activator of PKCε), or KAE1-1 (a cell-permeable, octa-peptide specific activator of PKCε) prevents 5-LOX inhibition-induced apoptosis, which indicates that inhibition of 5-LOX triggers apoptosis in prostate cancer cells via down-regulation of PKCε. Altogether, these findings suggest that metabolism of arachidonic acid by 5-LOX activity promotes survival of prostate cancer cells via signaling through PKCε, a pro-survival serine/threonine kinase.
Emerging studies indicate that metabolism of arachidonic acid through the 5-lipoxygenase (5-Lox) pathway plays a critical role in the survival of prostate cancer cells raising the possibility that 5-Lox can be targeted for an effective therapy of prostate cancer. Wedelolactone (WDL), a medicinal plant-derived natural compound, is known to inhibit 5-Lox activity in neutrophils. However, its effect on apoptosis in prostate cancer cells has not been addressed. Thus, we tested the effects of WDL on human prostate cancer cells in vitro. We observed that WDL kills both androgen-sensitive as well as androgen-independent prostate cancer cells in a dose-dependent manner by dramatically inducing apoptosis. We also found that WDL-induced apoptosis in prostate cancer cells is dependent on c-Jun N-terminal Kinase (c-JNK) and caspase-3. Interestingly, WDL triggers apoptosis in prostate cancer cells via downregulation of protein kinase Cε (PKCε), but without inhibition of Akt. WDL does not affect the viability of normal prostate epithelial cells (PrEC) at doses that kill prostate cancer cells, and WDL-induced apoptosis is effectively prevented by 5-oxoETE, a metabolite of 5-Lox (but not by 15-oxoETE, a metabolite of 15-Lox), suggesting that the apoptosis-inducing effect of WDL in prostate cancer cells is mediated via inhibition of 5-Lox activity. These findings indicate that WDL selectivity induces caspase-dependent apoptosis in prostate cancer cells via a novel mechanism involving inhibition of PKCε without affecting Akt and suggest that WDL may emerge as a novel therapeutic agent against clinical prostate cancer in human.
Inhibition of 5-Lox induces apoptosis in prostate cancer cells by inactivating PKCε which is prevented by 5-oxoETE, and activators of PKCε prevent 5-Lox inhibition-induced apoptosis, suggesting that 5-Lox metabolites exert survival signaling via PKCε. However, mechanisms by which 5-Lox metabolites activate PKCε are not understood yet. We found that prostate cancer cells express high levels of OXER1, a G protein-coupled 5-oxoETE receptor, which delivers signal by generating diacyl-glycerol through phospholipase C-beta. Interestingly, we found that U73122, an inhibitor of PLC-beta, interrupts the apoptosis-preventing effect of 5-oxoETE, and exogenous diacyl-glycerol effectively prevents 5-Lox inhibition-induced apoptosis, suggesting that 5-oxoETE signals via OXER1 to promote prostate cancer cell survival.
The present investigation was carried out to evaluate the antioxidant nature of ethanolic extract of Terminalia arjuna bark (EETA) on N-nitrosodiethylamine (DEN) induced liver cancer in male Wistar albino rats. Liver cancer was induced by single intraperitonial injection of DEN (200 mg/kg). After 2 weeks of DEN administration, Phenobarbital (PB) was given to promote the cancer for up to 14 successive weeks. EETA extract (400 mg/kg) was given post-orally for 28 days to hepatocellular carcinoma-bearing rats. After the experimental period, all the animals were sacrificed and serum, liver and kidney samples were collected for further biochemical analysis. The levels of lipid peroxides (LPO) under basal and also in the presence of inducers (H(2)O(2), ascorbate and FeSO(4)) were estimated in serum, liver and kidney of control and experimental animals. Enzymic antioxidants, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and non-enzymic antioxidants like Vitamin C (Vit-C) and Vitamin E (Vit-E) levels were determined in all the groups of animals. A significant increase in LPO levels were observed while the levels of enzymic and non-enzymic antioxidants were decreased, when subjected to DEN induction. These altered enzyme levels were ameliorated significantly by administration of EETA at the concentration of 400 mg/kg in drug-treated animals. This protective effect of EETA was associated with inhibition of LPO induced by DEN and to maintain the antioxidant enzyme levels. Our results show an antioxidant activity of T. arjuna bark against DEN-induced liver cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.