A hybrid feature selection (HFS) algorithm to obtain the optimal feature set to attain optimal forecast accuracy for short-term load forecasting (STLF) problems is proposed in this paper. The HFS employs an elitist genetic algorithm (EGA) and random forest method, which is embedded in the load forecasting algorithm for online feature selection (FS). Using selected features, the performance of the forecaster was tested to signify the utility of the proposed methodology. For this, a day-ahead STLF using the M5P forecaster (a comprehensive forecasting approach using the regression tree concept) was implemented with FS and without FS (WoFS). The performance of the proposed forecaster (with FS and WoFS) was compared with the forecasters based on J48 and Bagging. The simulation was carried out in MATLAB and WEKA software. Through analyzing short-term load forecasts for the Australian electricity markets, evaluation of the proposed approach indicates that the input feature selected by the HFS approach consistently outperforms forecasters with larger feature sets.
The novel coronavirus (nCOV) is a new strain that needs to be hindered from spreading by taking effective preventive measures as swiftly as possible. Timely forecasting of COVID-19 cases can ultimately support in making significant decisions and planning for implementing preventive measures. In this study, three common machine learning (ML) approaches via linear regression (LR), sequential minimal optimization (SMO) regression, and M5P techniques have been discussed and implemented for forecasting novel coronavirus disease-2019 (COVID-19) pandemic scenarios. To demonstrate the forecast accuracy of the aforementioned ML approaches, a preliminary sample-study has been conducted on the first wave of the COVID-19 pandemic scenario for three different countries including the United States of America (USA), Italy, and Australia. Furthermore, the contributions of this study are extended by conducting an in-depth forecast study on COVID-19 pandemic scenarios for the first, second, and third waves in India. An accurate forecasting model has been proposed, which has been constructed on the basis of the results of the aforementioned forecasting models of COVID-19 pandemic scenarios. The findings of the research highlight that LR is a potential approach that outperforms all other forecasting models tested herein in the present COVID-19 pandemic scenario. Finally, the LR approach has been used to forecast the likely onset of the fourth wave of COVID-19 in India.INDEX TERMS Death forecasting, linear regression (LR), M5P, machine learning (ML), novel coronavirus (nCOV), COVID-19 forecasting, SMO regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.