Hypothesis generation in observational, biomedical data science often starts with computing an association or identifying the statistical relationship between a dependent and an independent variable. However, the outcome of this process depends fundamentally on modeling strategy, with differing strategies generating what can be called “vibration of effects” (VoE). VoE is defined by variation in associations that often lead to contradictory results. Here, we present a computational tool capable of modeling VoE in biomedical data by fitting millions of different models and comparing their output. We execute a VoE analysis on a series of widely reported associations (e.g., carrot intake and eyesight) with an extended additional focus on lifestyle exposures (e.g., physical activity) and components of the Framingham Risk Score for cardiovascular health (e.g., blood pressure). We leveraged our tool for potential confounder identification, investigating what adjusting variables are responsible for conflicting models. We propose modeling VoE as a critical step in navigating discovery in observational data, discerning robust associations, and cataloging adjusting variables that impact model output.
While both genes and environment contribute to phenotype, deciphering environmental contributions to phenotype is a challenge. Furthermore, elucidating how different phenotypes may share similar environmental etiologies also is challenging. One way to identify environmental influences is through a discordant monozygotic (MZ) twin study design. Here, we assessed differential gene expression in MZ discordant twin pairs (affected vs. non-affected) for seven phenotypes, including chronic fatigue syndrome, obesity, ulcerative colitis, major depressive disorder, intermittent allergic rhinitis, physical activity, and intelligence quotient, comparing the spectrum of genes differentially expressed across seven phenotypes individually. Second, we performed meta-analysis for each gene to identify commonalities and differences in gene expression signatures between the seven phenotypes. In our integrative analyses, we found that there may be a common gene expression signature (with small effect sizes) across the phenotypes; however, differences between phenotypes with respect to differentially expressed genes were more prominently featured. Therefore, defining common environmentally induced pathways in phenotypes remains elusive. We make our work accessible by providing a new database (DiscTwinExprDB: http://apps.chiragjpgroup.org/disctwinexprdb/) for investigators to study non-genotypic influence on gene expression.
While both genes and environment contribute to phenotype, deciphering environmental contributions to phenotype is a challenge. Furthermore, elucidating how different phenotypes may share similar environmental etiologies also is challenging. One way to identify environmental influences is through a discordant monozygotic (MZ) twin study design. Here, we assessed differential gene expression in MZ discordant twin pairs (affected vs. non-affected) for seven phenotypes, including chronic fatigue syndrome, obesity, ulcerative colitis, major depressive disorder, intermittent allergic rhinitis, physical activity, and intelligence quotient, comparing the spectrum of genes differentially expressed across seven phenotypes individually.Second, we performed meta-analysis for each gene to identify commonalities and differences in gene expression signatures between the seven phenotypes. In our integrative analyses, we found that there may be a common gene expression signature (with small effect sizes) across the phenotypes; however, differences between phenotypes with respect to differentially expressed genes were more prominently featured. Therefore, defining common environmentally induced pathways in phenotypes remains elusive. We make our work accessible by providing a new database (DiscTwinExprDB: http://apps.chiragjpgroup.org/disctwinexprdb/) for investigators to study non-genotypic influence on gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.