Rapid urbanization is threatening sustainable development of urban areas in Tanzania. Among the risks of rapid urbanization are Urban Heat Island (UHI) effect and climate change. While this has been noted, it is not known to what extent these risks are being realized in fast growing urban areas like Morogoro and other areas of similar geographic and climatic conditions. Therefore a study was conducted to assess the influence of urbanization on UHI and climate in Morogoro Municipality using remote sensing and climate data. Landsat imageries acquired in 1990, 2000 and 2015 were used to assess the change of impervious surface for the year 1990 to 2015 using a Classification and Regression Tree (CART). Radiant surface temperature and normalized difference vegetation index (NDVI) were derived from thermal band and reflectance bands respectively. Mann-Kendall test was used to analyze climate data for trends. Results revealed an increase of impervious surface (built up areas) from 9 km 2 in 1990 to 48 km 2 in 2000 and 82 km 2 in 2015; which is associated with UHI. UHI was not apparent in 1990, but was apparent in 2000 and 2015 with the temperature rise of 1.08˚C and 1.22˚C respectively. A linear relationship between radiant surface temperature (T B ) and percent Impervious Surface (ISA); and between T B and NDVI it revealed that NDVI is better indicator of variations in T B dynamics than percent ISA. Mann-Kendall test indicated a significant increasing trend in mean annual maximum temperature. The results imply that increasing ISA coupled with vegetation degradation has contributed to temperature rise and change. Consequently, Morogoro Municipality residents are likely to suffer heat stress due to rapid urbanization. It is recommended that education on the use of reflective surfaces should be given to the residents; and an effective master plan that protects vegetation should be in place.
This paper presents the lessons learnt from a research project titled "Improving Beef Cattle Productivity for Enhanced Food Security and Efficient Utilization of Natural Resources in the Lake Victoria Basin" which includes Tanzania, Uganda and Rwanda. The key focus is on the implications of land use land cover change and climate variability on the future prospects of beef cattle production in this region. The study utilizes information and data from natural resources and climate components to deduce the impact of land use and land cover changes on climate variability. Additional analysis is conducted to summarize the land use and land cover data to carry out analysis on climate data using the Mann-Kendal test, linear regression and moving averages to reveal patterns of change and trends in annual and seasonal rainfall and temperature. The findings reveal that the study areas of Rwanda, Uganda and Tanzania in the Lake Victoria Basin (LVB) have changed over time following land cover manipulations and land use change, coupled with climate variability. The grazing land has been converted to agriculture and settlements, thereby reducing cattle grazing land which is the cheapest and major feed source for ruminant livestock production. Although * Corresponding author. J. J. Kashaigili et al. 462the cattle population has been on the increase in the same period, it has been largely attributed to the fact that the carrying capacity of available grazing areas had not been attained. The current stocking rates in the LVB reveal that the rangelands are greatly overstocked and overgrazed with land degradation already evidenced in some areas. Climate variability coupled with a decrease in grazing resources is driving unprecedented forage scarcity which is now a major limiting factor to cattle production. Crop cultivation and settlement expansion are major land use types overtaking grazing lands; therefore the incorporation of crop residues into ruminant feeding systems could be a feasible way to curtail rangeland degradation and increase beef cattle production.
The beef cattle production system practiced in the Lake Victoria Basin ismainly extensive, which involves cattle grazing on natural pastures. Thissystem is characterized by overgrazing, low livestock production and soildegradation. Under the effects of global climate change, these pastoralmanagement challenges are expected to increase. As the impacts of climatechange to beef cattle production over the Lake Victoria Basin is unknown,this study used participatory mapping method and focus group discussions toassess spatial changes in livestock routes in relation to water and pastureavailability in the Ilemela and Magu districts of the Mwanza region, Tanzania. GIS technology was used for the formalization of spatial layers. It was revealed that there were many changes in livestock routes such that some have become roads, some have been lost, and others narrowed. These changes were due to an increase in settlements and cultivated areas, and more specifically a general decline of water sources and grazing land. This implies that appropriate strategies such as a land-use planning, stock routings modification, education on effective cattle farming, and intervention by rainwater harvesting should be designed so as to adapt to climate change effects, and improve livestock production in Ilemela and Magu districts
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.