Diabetic macular edema (DME) has shown an increasing prevalence during the past years and is the leading cause of diabetic retinopathy blindness. Traditional treatment modalities include laser and corticosteroid therapy, which, however, either act through unclear mechanisms or cause cataracts and elevated intraocular pressure. In recent years, as the pathogenic role of VEGF in DME has been well-recognized, the intravitreal injection of anti-VEGF drugs has become the first-line treatment of DME due to their great efficacy in improving visual acuity and mitigating macular edema. Advantages have been shown for aflibercept and conbercept, the two recombinant decoy receptors that can bind VEGF with high specificity and affinity, in DME treatment in clinical trials conducted both worldwide and in People’s Republic of China. This review introduces the structural characteristics and molecular mechanisms of action of these two anti-VEGF drugs, and summarizes the clinical trials evaluating their efficacy and safety, with the hope to provide clues for designing optimal and personalized therapeutic regimens for DME patients.
Background/Aims: Blood-retinal barrier (BRB) breakdown and vascular leakage is the leading cause of blindness of diabetic retinopathy (DR). Hyperglycemia-induced oxidative stress and inflammation are primary pathogenic factors of this severe DR complication. An effective interventional modality against the pathogenic factors during early DR is needed to curb BRB breakdown and vascular leakage. This study sought to examine the protective effects of α-Melanocyte-stimulating hormone (α-MSH) on early diabetic retina against vascular hyperpermeability, electrophysiological dysfunction, and morphological deterioration in a rat model of diabetes and probe the mechanisms underlying the α-MSH’s anti-hyperpermeability in both rodent retinas and simian retinal vascular endothelial cells (RF6A). Methods: Sprague Dawley rats were injected through tail vein with streptozotocin to induce diabetes. The rats were intravitreally injected with α-MSH or saline at Week 1 and 3 after hyperglycemia. In another 2 weeks, Evans blue assay, transmission electron microscopy, electroretinogram (ERG), and hematoxylin and eosin (H&E) staining were performed to examine the protective effects of α-MSH in diabetic retinas. The expression of pro-inflammatory factors and tight junction at mRNA and protein levels in retinas was analyzed. Finally, the α-MSH’s anti-hyperpermeability was confirmed in a high glucose (HG)-treated RF6A cell monolayer transwell culture by transendothelial electrical resistance (TEER) measurement and a fluorescein isothiocyanate-Dextran assay. Universal or specific melanocortin receptor (MCR) blockers were also employed to elucidate the MCR subtype mediating α-MSH’s protection. Results: Evans blue assay showed that BRB breakdown and vascular leakage was detected, and rescued by α-MSH both qualitatively and quantitatively in early diabetic retinas; electron microscopy revealed substantially improved retinal and choroidal vessel ultrastructures in α-MSH-treated diabetic retinas; scotopic ERG suggested partial rescue of functional defects by α-MSH in diabetic retinas; and H&E staining revealed significantly increased thickness of all layers in α-MSH-treated diabetic retinas. Mechanistically, α-MSH corrected aberrant transcript and protein expression of pro-inflammatory factor and tight junction genes in the diseased retinas; moreover, it prevented abnormal changes in TEER and permeability in HG-stimulated RF6A cells, and this anti-hyperpermeability was abolished by a universal MCR blocker or an antagonist specific to MC4R. Conclusions: This study showed previously undescribed protective effects of α-MSH on inhibiting BRB breakdown and vascular leakage, improving electrophysiological functions and morphology in early diabetic retinas, which may be due to its down-regulating pro-inflammatory factors and augmenting tight junctions. α-MSH acts predominantly on MC4R to antagonize hyperpermeability in retinal microvessel endothelial cells.
Ocular neovascularization is a pathological sequel of multiple eye diseases. Based on the anatomical site into which the abnormal neovessels grow, ocular neovascularization can be categorized into corneal neovascularization, choroidal neovascularization, and retinal neovascularization. Each category is intractable, and may lead to blindness if not appropriately treated. However, the current therapeutic modalities, including laser photocoagulation, vitrectomy surgery, and anti-VEGF drugs, raise concerns due to limited efficacy, damage on retinal parenchyma and vasculature, and the patients' unresponsiveness to the treatments. Therefore, the in-depth study on pathogenesis of and the search for novel therapeutic targets to the ocular neovascularization are needed. During the last 10 years or so, a large number of literatures have emerged indicating a critical role of noncoding RNAs, particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), in the pathogenesis and regulation of the ocular neovascularization. This review summarizes the current understanding of the biosynthesis and functions of the miRNAs and lncRNAs, the regulation of the miRNAs and lncRNAs in neovascular eye diseases, as well as the roles of these noncoding RNAs in the disease models of ocular neovascularization, in the hope that it could provide clues for the pathogenesis of and molecular targets to the ocular neovascularization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.