We present a nonuniform multiphase (NUMP) method to construct a high-resolution time-todigital converter (TDC) for low-cost field-programmable gate array (FPGA) devices. The NUMP method involves a system clock being passed through a series of delay elements to generate multiple clocks with different phase shifts. The phases of the rising and falling edges of all the
Purpose Depth of interaction (DOI) decoding capability is of great importance for positron emission tomography (PET) requiring high resolution. In this study, we presented a novel low‐cost DOI detector design with four crystals coupling to one SiPM, based on the method of rectangular light‐sharing window (RLSW). A prototype detector was constructed, calibrated, and assessed using the methods of homogeneous radiation and flood map analysis. Methods The DOI detector was constructed with a 4 × 4 array of lutetium‐yttrium oxyorthosilicate (LYSO) crystals (2.95 mm × 2.95 mm × 20 mm3), barium sulfate (BaSO4) reflectors, and optical glues. A RLSW 7 mm in height was deployed in the BaSO4 reflectors. A non‐DOI detector with identical dimensions and without RLSW was also constructed for comparison. The light‐output surface of the detector was air‐coupled with a 4 × 4 array of SiPMs (3 mm × 3 mm2). The signals generated from the 16 SiPMs were read out by a custom‐designed electronic system, and the signals from four adjacent 3 mm SiPMs were summed into one signal to emulate a 2 × 2 array of 6 mm SiPMs. The RLSW caused the DOI‐related position shifts of the crystal spots in the flood map. A homogeneous radiation method was used to establish the transfer functions to convert the spot shifts measured from the flood map into DOI measurements. The accuracy of the DOI measurements was assessed with data acquired using the conventional collimated radiation method. Results All 16 crystals are distinctly separated from each other in the flood map. Twelve crystals, including four central crystals and eight edge crystals, have the DOI capability. The full width half maximum (FWHM) of the DOI measurements of the central crystals and the edge crystals are 3.06 ± 0.08 and 3.79 ± 0.15 mm, respectively, for the configuration with four crystals coupling to one SiPM. By contrast, the FWHMs (3.98 ± 0.16 and 5.12 ± 0.38 mm, respectively) are slightly worse for the configuration with one crystal coupling to one SiPM. The average and standard deviation (STD) of the FWHM energy resolutions of the DOI detector and non‐DOI detector were 10.2% ± 0.7% and 10.7% ± 1.7%, respectively. Their FWHM coincidence timing resolutions were 197.0 ± 9.6 and 206.4 ± 13.3 ps, respectively. The RLSW had no significant impact on the energy resolutions and timing resolutions of the DOI detector. Conclusions The novel four‐crystals‐to‐one‐SiPM coupling technology is a cost‐efficient approach to construct high‐performance detector modules with DOI capability. The methods of homogeneous radiation and flood map analysis are easy to perform and of good performance. Those methods can be adapted in the clinic PET scanners to enable the capability of DOI measurements.
The performance of radiation detectors used in positron-emission tomography (PET) is determined by the intrinsic properties of the scintillators, the geometry and surface treatment of the scintillator crystals and the electrical and optical characteristics of the photosensors. Experimental studies were performed to assess the timing resolution and energy resolution of detectors constructed with samples of different scintillator materials (LaBr3, CeBr3, LFS, LSO, LYSO: Ce, Ca and GAGG) that were fabricated into different shapes with various surface treatments. The saturation correction of SiPMs was applied for tested detectors based on a Tracepro simulation. Overall, we tested 28 pairs of different forms of scintillators to determine the one with the best CTR and light output. Two common high-performance silicon photomultipliers (SiPMs) provided by SensL (J-series, 6 mm) or AdvanSiD (NUV, 6 mm) were used for photodetectors. The PET detector constructed with 6 mm CeBr3 cubes achieved the best CTR with a FWHM of 74 ps. The 4 mm co-doped LYSO: Ce, Ca pyramid crystals achieved 88.1 ps FWHM CTR. The 2 mm, 4 mm and 6 mm 0.2% Ce, 0.1% Ca co-doped LYSO cubes achieved 95.6 ps, 106 ps and 129 ps FWHM CTR, respectively. The scintillator crystals with unpolished surfaces had better timing than those with polished surfaces. The timing resolution was also improved by using certain geometric factors, such as a pyramid shape, to improve light transportation in the scintillator crystals.
Positron emission tomography (PET) is widely used in the diagnosis of tumors, cardiovascular system diseases, and neurological diseases. Scintillation crystals are an important part of PET scanners; they can convert γ photons into fluorescent photons to obtain their energy, time, and position information. Currently, an important research goal in PET is to find scintillation crystals with better performance. In this work, the principle of scintillation crystals is introduced, and the properties and requirements of scintillation crystals in different PET scanners are analyzed. At present, Lu2(1−x)Y2xSiO5 (LYSO) is the scintillation crystal with the best comprehensive properties. LaBr3 performs even better regarding the timing characteristics and light output; however, LaBr3 has not been used in any PET scanner because of its deliquescence. Detectors made of Gd3(Ga, Al)5O12 (GAGG) exhibit a high depth of interaction (DOI) resolution and have considerable application potential. The application fields of PET are constantly expanding, and its future development aims to achieve high spatial resolution and high sensitivity, which require scintillation crystals with better performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.