During the operation of an aviation fuel centrifugal pump, the performance of the pump dropped sharply due to cavitation, which caused cavitation damage near the volute tongue, which seriously threatened the safe and stable operation of the aircraft. According to the characteristics that the cavitation in the volute tongue region occurs in large flow rate, the volute tongue shape of aviation fuel centrifugal pump was improved in this paper, and the influence of the volute tongue shape on the cavitation characteristics of aviation fuel centrifugal pump at 1.2 times of design flow rate was studied. The research shows that under 1.2 times of design flow rate, the critical cavitation number of the improved volute tongue shape is reduced by 7.4% compared with the original scheme. The improved volute tongue effectively suppresses the generation of cavitation in the volute tongue region. The vortex core distribution area is reduced compared to the original scheme. When the cavitation number is low, doubling the axial passing frequency on the pressure pulsation spectrum at the monitoring point of the volute tongue is obviously weakened.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.