Gastric cancer is one of the most common malignancies and remains the second leading cause of cancer-related death worldwide. Over 70% of new cases and deaths occur in developing countries. In the early years of the molecular biology revolution, cancer research mainly focuses on genetic alterations, including gastric cancer. Epigenetic mechanisms are essential for normal development and maintenance of tissue-specific gene expression patterns in mammals. Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Recent advancements in the rapidly evolving field of cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer, including DNA methylation, histone modifications, nucleosome positioning, noncoding RNAs, and microRNAs. Aberrant DNA methylation in the promoter regions of gene, which leads to inactivation of tumor suppressor and other cancer-related genes in cancer cells, is the most well-defined epigenetic hallmark in gastric cancer. The advantages of gene methylation as a target for detection and diagnosis of cancer in biopsy specimens and non-invasive body fluids such as serum and gastric washes have led to many studies of application in gastric cancer. This review focuses on the most common and important phenomenon of epigenetics, DNA methylation, in gastric cancer and illustrates the impact epigenetics has had on this field.
BackgroundMicroRNAs (miRNAs) are a large group of negative gene regulators that potentially play a critical role in tumorigenesis. Increasing evidences indicate that miR-145 acts a tumor suppressor in numerous human cancers. However, its role in oral carcinogenesis remains poorly defined. The aim of this study is to determine expression levels of miR-145 in oral squamous cell carcinomas (OSCCs) and normal mucosa tissues, and explore its biological functions in OSCCs.MethodsReverse transcription quantitative real-time PCR (RT-qPCR) assay was used to evaluate expression levels of miR-145. The biological functions of miR-145 were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell invasion assay.ResultsMiR-145 was frequently down-regulated in OSCCs compared with normal mucosa tissues. Restoring miR-145 expression in OSCC cells dramatically suppressed cell proliferation and colony formation, and induced G1 phase arrest and cell apoptosis. Importantly, our data showed that miR-145 downregulated the expression of c-Myc and Cdk6, which have previously been identified as two direct targets of miR-145.ConclusionsOur data suggest that miR-145 exerts its tumor suppressor function by targeting c-Myc and Cdk6, leading to the inhibition of OSCC cell growth. MiR-145 rescue may thus be a rational for diagnostic and therapeutic applications in OSCC.
BackgroundChange of mitochondrial DNA (mtDNA) copy number is widely reported in various human cancers, including gastric cancer, and is considered to be an important hallmark of cancers. However, there is remarkably little consensus on the value of variable mtDNA content in the prognostic evaluation of this cancer.MethodsUsing real-time quantitative PCR approach, we examined mtDNA copy number in a cohort of gastric cancers and normal gastric tissues, and explored the association of variable mtDNA content with clinical outcomes of gastric cancer patients.ResultsOur data showed that the majority of gastric cancer patients had low mtDNA content as compared to control subjects although the relative mean mtDNA content was higher in the former than the latter. Moreover, we found that variable mtDNA content was strongly associated with lymph node metastasis and cancer-related death of the patients with late-stage tumors. Notably, variable mtDNA content did not affect overall survival of gastric cancer patients, however, we found that increased mtDNA content was associated with poor survival in the patients with late-stage tumors.ConclusionIn this study, we demonstrated that variable mtDNA content markedly increased the risk of lymph node metastasis and high mortality of the patients with late-stage tumors. Additionally, we found a strong link between increased mtDNA content and worse survival of the patients with late-stage tumors. Taken together, variable mtDNA content may be a valuable poor prognostic factor for advanced gastric cancer patients.Virtual slidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1344721463103353.
Head and neck squamous cell cancer (HNSCC) is estimated to be the sixth most common malignant tumor worldwide. Of which, laryngeal cancer is the second most common HNSCC.1 The definite cause of laryngeal cancer is not yet determined, although some risk factors, such as tobacco and alcohol consumption, genetic and epigenetic alterations are believed to be linked with the development of this disease. 2,3Telomerase reverse transcriptase (TERT) gene, which encodes the catalytic subunit of telomerase, has been demonstrated to be up-regulated in human cancers, contributing to carcinogenesis. 4 Recently, two recurrent somatic mutations (1,295,228 C>T and 1,295,250 C>T, hereafter named C228T and C250T, respectively) in the TERT gene promoter have been frequently reported in various human cancers, including melanoma (71%), thyroid cancer (22-51%), bladder cancer (84.6%) and glioblastoma (83.8%). [5][6][7][8] In contrast, a very low frequency of these mutations has been found in certain cancers, particularly in esophageal squamous cell carcinoma (1.6%) and gastric cancer (0.7%).8-10 Importantly, these two mutations conferred a 2-to 4-fold increase in TERT transcriptional activity.5 Moreover, they have been demonstrated to be absent in benign tumors and normal subjects, implicating their potentially critical roles in human carcinogenesis. Although a previous study showed frequent TERT promoter mutations in head and neck cancers especially tongue cancer
ObjectivesAlterations in mitochondrial DNA (mtDNA) copy number have been widely reported in various human cancers, and been considered to be an important hallmark of cancers. However, little is known about the value of copy number variations of mtDNA in the prognostic evaluation of laryngeal cancer.Design and methodsUsing real-time quantitative PCR method, we investigated mtDNA copy number in a cohort of laryngeal cancers (n =204) and normal laryngeal tissues (n =40), and explored the association of variable mtDNA copy number with clinical outcomes of laryngeal cancer patients.ResultsOur data showed that the relative mean mtDNA content was higher in the laryngeal cancer patients (11.91 ± 4.35 copies) than the control subjects (4.72 ± 0.70 copies). Moreover, we found that mtDNA content was negatively associated with cigarette smoking (pack-years), tumor invasion, and TNM stage. Notably, variable mtDNA content did not affect overall survival of laryngeal cancer patients. However, when the patients were categorized into early-stage and late-stage tumor groups according to TNM stage, we found that low mtDNA content was strongly associated with poor survival in the former, but not in the latter.ConclusionsThe present study demonstrated that low mtDNA content was strongly correlated with some of clinicopathological characteristics, such as cigarette smoking, tumor invasion and TNM stage. In addition, we found a strong link between low mtDNA content and worse survival of the patients with early-stage tumors. Taken together, low copy number of mtDNA may be a useful poor prognostic factor for early-stage laryngeal cancer patients.Virtual slidesThe virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1841771572115955
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.