High concentrations of arsenic (As) in groundwater pose a great threat to human health. The motivation of this study was to provide a practical solution for As-safe water in As geogenic areas using granular TiO 2 (GTiO 2 ). The kinetics results indicated that the As (III/V) adsorption on GTiO 2 conformed to the Weber-Morris (WM) intraparticle diffusion model. The Langmuir isotherm results suggested that the adsorption capacities for As (III) and As (V) were 106.4 and 38.3 mg/g, respectively. Ion effect study showed that cationic Ca and Mg substantially enhanced As (V) adsorption, whereas no significant impact was observed on As (III). Silicate substantially decreased As (V) adsorption by 57 % and As (III) by 50 %. HCO 3 − remarkably inhibited As (V) adsorption by 52 %, whereas it slightly reduced As (III) adsorption by 8 %. Field column results demonstrated that ∼700 μg/L As was removed at an empty bed contact time (EBCT) of 1.08 min for 968 bed volumes before effluent As concentration exceeded 10 μg/L, corresponding to 0.96 mg As/g GTiO 2 . Two household filters loaded with 110 g GTiO 2 in the on-off operational mode can provide 6-L/day As-safe drinking water up to 288 and 600 days from the groundwater containing ∼700 μg/L As and ∼217 μg/L As, respectively. Integration of batch experiments and column tests with systematic variation of EBCTs was successfully achieved using PHREEQC incorporating a charge distribution multisite complexation (CD-MUSIC) model and one-dimensional reactive transport block.
In this work, a ternary TiO2/Graphene oxide/Polyaniline (TiO2/GO/PANI) nanocomposite was synthesized by in situ oxidation and use as a filler on epoxy resin (TiO2/GO/PANI/EP), a bifunctional in situ protective coating has been developed and reinforced the Q235 carbon steel protection against corrosion. The structure and optical properties of the obtained composites are characterized by XRD, FTIR, and UV–vis. Compared to bare TiO2 and bare Q235, the TiO2/GO/PANI/EP coating exhibited prominent photoelectrochemical properties, such as the photocurrent density increased 0.06 A/cm2 and the corrosion potential shifted from −651 mV to −851 mV, respectively. The results show that the TiO2/GO/PANI nanocomposite has an extended light absorption range and the effective separation of electron-hole pairs improves the photoelectrochemical performance, and also provides cathodic protection to Q235 steel under dark conditions. The TiO2/GO/PANI/EP coating can isolate the Q235 steel from the external corrosive environment, and may generally be regarded a useful protective barrier coating to metallic materials. When the TiO2/GO/PANI composite is dispersed in the EP, the compactness of the coating is improved and the protective barrier effect is enhanced.
a b s t r a c tIncidental ingestion of Chromite ore processing residue (COPR) particles poses a potential health risk. The purpose of this study was to determine the Cr bioaccessibility from COPR using the in vitro gastrointestinal (IVG) procedure. The bioaccessible Cr(VI) was 53.8% and 42.9%, respectively, in the gastric and intestinal phases from a total of 19 490 mg kg −1 Cr(VI) in COPR. Food intake including milk, dough, and ascorbic acid resulted in a significant decrease in Cr(VI) bioaccessibility. Some organic acids such as lactic, malic, and citric acid moderately reduced Cr(VI), while acetic acid exhibited no capacity for Cr(VI) reduction. The integrated area under the concentration-time curve (AUC) of the IVG extraction was used to calculate bioaccessibility. Compared with the bioaccessibility conventionally estimated using concentrations at the end of the extraction (CEP), the AUC technique should be implemented to confirm the accuracy of the IVG method when reduction of Cr(VI) occurs during the extraction. The absence of Cr(VI) phases in extracted residues as evidenced by XANES and XRPD analysis confirmed the Cr(VI) release and Cr(VI) reduction by food and ascorbic acid. With readily bioaccessible Cr(VI) and rapid human uptake, reduction of Cr(VI) might not be as effective a detoxification pathway as initially thought.
Bamboo is a typical natural composite material, and its special structure and excellent properties provide important information for the biomimetic design of composites. To strengthen the fiber content of bamboo distributed in a gradient, a bimimetic nano-Al 2 O 3 composite coating was designed and prepared on the surface of metal parts using a nanocomposite electrodeposition method. The optimal technology parameters were obtained, such as current density, PH value, nano-Al 2 O 3 content in electrolyte, and style of stirring etc after the experiments. The microstructure of the biomimetic nanocomposite gradient coating was very dense, and the contents of nano-Al 2 O 3 were distributed in the gradient. The microhardness of the composite coating changed from the surface to the inside in the gradient also. Moreover, the wetting angle between water and composite coating obviously increased and reached 97°at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.