There is a high prevalence of nonalcoholic fatty liver among certain population in Shanghai, to which overweight and hyperlipidemia are closely relevant.
The realization of covalent adaptable networks with excellent mechanical and dynamic properties remains a major challenge. Herein, the acylsemicarbazide (ASC) moieties with dynamic reversibility and multiple hydrogen bonding were disclosed and used to prepare transparent, high modulus, and malleable polymer networks. It was found that the ASC moiety can reversibly generate isocyanate and hydrazide at elevated temperatures, that is, exhibiting dynamic reversibility. ASC can also produce the disordered multiple hydrogen bonds that contribute to superior mechanical strength for dynamic polymers. The hydrogen bonding in ASC moieties can diminish the energy barrier for the cleavage of dynamic covalent bonds, and the dissociation of ASC moieties further promotes the disruption of hydrogen bonds, showing the synergistic dynamic effects. ASC moieties provide a valuable molecular engineering opportunity toward high-performance dynamic polymer materials. The polymer containing ASC moieties possesses excellent optical transparency, superb mechanical performance (Young's modulus up to 1.7 GPa), together with malleable and healing properties.
Rapid absorption of wound exudate and prevention of wound infection are prerequisites for wound dressing to accelerate wound healing. In this study, a novel kind of promising wound dressing is developed by incorporating polyhexamethylene guanidine (PHMG)‐modified graphene oxide (mGO) into the poly(vinyl alcohol)/chitosan (PVA/CS) matrix, conferring the dressing the required mechanical properties, higher water vapor transmission rate (WVTR), less swelling time, improved antibacterial activity, and more cell proliferation compared to the PVA/CS film crosslinked by genipin. In vivo experiments indicate that the PVA/CS/mGO composite film can accelerate wound healing via enhancement of the re‐epithelialization. PVA/CS/mGO composite film with 0.5 wt% mGO sheets displays the best wound healing properties, as manifested by the 50% higher antibacterial rate compared to GO and the wound healing rate of the mouse using this dressing is about 41% faster than the control group and 31% faster than the pure PVA/CS dressing. The underlying mechanism of the accelerated wound healing properties may be a result of the improved antibacterial ability to eradicate pathogenic bacteria on the wound area and maintain an appropriate moist aseptic wound healing environment to accelerate re‐epithelialization. These findings suggest that this novel composite PVA/CS/mGO film may have promising applications in wound dressing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.