Universal dependencies (UD) is a framework for morphosyntactic annotation of human language, which to date has been used to create treebanks for more than 100 languages. In this article, we outline the linguistic theory of the UD framework, which draws on a long tradition of typologically oriented grammatical theories. Grammatical relations between words are centrally used to explain how predicate–argument structures are encoded morphosyntactically in different languages while morphological features and part-of-speech classes give the properties of words. We argue that this theory is a good basis for cross-linguistically consistent annotation of typologically diverse languages in a way that supports computational natural language understanding as well as broader linguistic studies.
In dialogues, an utterance is a chain of consecutive sentences produced by one speaker which ranges from a short sentence to a thousand-word post. When studying dialogues at the utterance level, it is not uncommon that an utterance would serve multiple functions. For instance, "Thank you. It works great. " expresses both gratitude and positive feedback in the same utterance. Multiple dialogue acts (DA) for one utterance breeds complex dependencies across dialogue turns. Therefore, DA recognition challenges a model's predictive power over long utterances and complex DA context. We term this problem Concurrent Dialogue Acts (CDA) recognition. Previous work on DA recognition either assumes one DA per utterance or fails to realize the sequential nature of dialogues. In this paper, we present an adapted Convolutional Recurrent Neural Network (CRNN) which models the interactions between utterances of long-range context. Our model significantly outperforms existing work on CDA recognition on a tech forum dataset.
This paper describes our submission to the DISRPT2021 Shared Task on Discourse Unit Segmentation, Connective Detection, and Relation Classification. Our system, called Dis-CoDisCo, is a Transformer-based neural classifier which enhances contextualized word embeddings (CWEs) with hand-crafted features, relying on tokenwise sequence tagging for discourse segmentation and connective detection, and a feature-rich, encoder-less sentence pair classifier for relation classification. Our results for the first two tasks outperform SOTA scores from the previous 2019 shared task, and results on relation classification suggest strong performance on the new 2021 benchmark. Ablation tests show that including features beyond CWEs are helpful for both tasks, and a partial evaluation of multiple pre-trained Transformer-based language models indicates that models pre-trained on the Next Sentence Prediction (NSP) task are optimal for relation classification.
In this paper we present GumDrop, Georgetown University's entry at the DISRPT 2019 Shared Task on automatic discourse unit segmentation and connective detection. Our approach relies on model stacking, creating a heterogeneous ensemble of classifiers, which feed into a metalearner for each final task. The system encompasses three trainable component stacks: one for sentence splitting, one for discourse unit segmentation and one for connective detection. The flexibility of each ensemble allows the system to generalize well to datasets of different sizes and with varying levels of homogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.