Perceptual aliasing is one of the main causes of failure for Simultaneous Localization and Mapping (SLAM) systems operating in the wild. Perceptual aliasing is the phenomenon where different places generate a similar visual (or, in general, perceptual) footprint. This causes spurious measurements to be fed to the SLAM estimator, which typically results in incorrect localization and mapping results. The problem is exacerbated by the fact that those outliers are highly correlated, in the sense that perceptual aliasing creates a large number of mutuallyconsistent outliers. Another issue stems from the fact that most state-of-the-art techniques rely on a given trajectory guess (e.g., from odometry) to discern between inliers and outliers and this makes the resulting pipeline brittle, since the accumulation of error may result in incorrect choices and recovery from failures is far from trivial. This work provides a unified framework to model perceptual aliasing in SLAM and provides practical algorithms that can cope with outliers without relying on any initial guess. We present two main contributions. The first is a Discrete-Continuous Graphical Model (DC-GM) for SLAM: the continuous portion of the DC-GM captures the standard SLAM problem, while the discrete portion describes the selection of the outliers and models their correlation. The second contribution is a semidefinite relaxation to perform inference in the DC-GM that returns estimates with provable sub-optimality guarantees. Experimental results on standard benchmarking datasets show that the proposed technique compares favorably with state-of-theart methods while not relying on an initial guess for optimization.
Combined systems consisting of linear structures carrying lumped attachments have received considerable attention over the years. In this paper, the assumed modes method is first used to formulate the governing equations of the combined system, and the corresponding generalized eigenvalue problem is then manipulated into a frequency equation. As the number of modes used in the assumed modes method increases, the approximate eigenvalues converge to the exact solutions. Interestingly, under certain conditions, as the number of component modes goes to infinity, the infinite sum term in the frequency equation can be reduced to a finite sum using digamma function. The conditions that must be met in order to reduce an infinite sum to a finite sum are specified, and the closed-form expressions for the infinite sum are derived for certain linear structures. Knowing these expressions allows one to easily formulate the exact frequency equations of various combined systems, including a uniform fixed–fixed or fixed-free rod carrying lumped translational elements, a simply supported beam carrying any combination of lumped translational and torsional attachments, or a cantilever beam carrying lumped translational and/or torsional elements at the beam's tip. The scheme developed in this paper is easy to implement and simple to code. More importantly, numerical experiments show that the eigenvalues obtained using the proposed method match those found by solving a boundary value problem.
Markov Random Fields (MRFs) are a popular model for several pattern recognition and reconstruction problems in robotics and computer vision. Inference in MRFs is intractable in general and related work resorts to approximation algorithms. Among those techniques, semidefinite programming (SDP) relaxations have been shown to provide accurate estimates while scaling poorly with the problem size and being typically slow for practical applications. Our first contribution is to design a dual ascent method to solve standard SDP relaxations that takes advantage of the geometric structure of the problem to speed up computation. This technique, named Dual Ascent Riemannian Staircase (DARS), is able to solve large problem instances in seconds. Our second contribution is to develop a second and faster approach. The backbone of this second approach is a novel SDP relaxation combined with a fast and scalable solver based on smooth Riemannian optimization. We show that this approach, named Fast Unconstrained SEmidefinite Solver (FUSES), can solve large problems in milliseconds. Contrarily to local MRF solvers, e.g., loopy belief propagation, our approaches do not require an initial guess. Moreover, we leverage recent results from optimization theory to provide per-instance sub-optimality guarantees. We demonstrate the proposed approaches in multi-class image segmentation problems. Extensive experimental evidence shows that (i) FUSES and DARS produce near-optimal solutions, attaining an objective within 0.1% of the optimum, (ii) FUSES and DARS are remarkably faster than general-purpose SDP solvers, and FUSES is more than two orders of magnitude faster than DARS while attaining similar solution quality, (iii) FUSES is faster than local search methods while being a global solver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.