Proportional-integral-derivative (PID) control is the most widely used in industrial control, robot control, and other fields. However, traditional PID control is not competent when the system cannot be accurately modeled and the operating environment is variable in real time. To tackle these problems, we propose a self-adaptive model-free SAC-PID control approach based on reinforcement learning for automatic control of mobile robots. A new hierarchical structure is developed, which includes the upper controller based on soft actor-critic (SAC), one of the most competitive continuous control algorithms, and the lower controller based on incremental PID controller. SAC receives the dynamic information of the mobile robot as input and simultaneously outputs the optimal parameters of incremental PID controllers to compensate for the error between the path and the mobile robot in real time. In addition, the combination of 24-neighborhood method and polynomial fitting is developed to improve the adaptability of SAC-PID control method to complex environment. The effectiveness of the SAC-PID control method is verified with several different difficulty paths both on Gazebo and real mecanum mobile robot. Furthermore, compared with fuzzy PID control, the SAC-PID method has merits of strong robustness, generalization, and real-time performance.
This paper proposes an effective approach for the scaling registration of m-D point sets. Different from the rigid transformation, the scaling registration can not be formulated into the common least square function due to the ill-posed problem caused by the scale factor. Therefore, this paper designs a novel objective function for the scaling registration problem. The appearance of this objective function is a rational fraction, where the numerator item is the least square error and the denominator item is the square of the scale factor. By imposing the emphasis on scale factor, the ill-posed problem can be avoided in the scaling registration. Subsequently, the new objective function can be solved by the proposed scaling iterative closest point (ICP) algorithm, which can obtain the optimal scaling transformation. For the practical applications, the scaling ICP algorithm is further extended to align partially overlapping point sets. Finally, the proposed approach is tested on public data sets and applied to merging grid maps of different resolutions.Experimental results demonstrate its superiority over previous approaches on efficiency and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.