The synthesis of square planar Ni(II) and Pd(II) complexes with pyrrolidine dithiocarbamate (PDTC) was characterized by elemental, physiochemical, and spectroscopic methods. Two complexes were prepared by the reaction of nickel acetate and palladium acetate with pyrrolidine dithiocarbamate (PDTC) in 1 : 2 molar ratio. The bovine serum albumin (BSA) interaction with complexes was examined by absorption and fluorescence spectroscopic techniques at pH 7.4. All the spectral data suggest that coordination of the pyrrolidine dithiocarbamate (PDTC) takes place through the two sulphur atoms in a symmetrical bidentate fashion. All the synthesized compounds were screened for their antimicrobial activity against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia, and Bacillus cereus). It has been observed that complexes have higher activity than the free ligand.
Both electrostatic and hydrophobic interactions play pivotal roles in ligand−surfactant binding interaction, especially for ionic surfactants. While much studies have been reported in the micellar region, less attention has been paid on such interactions at a low (premicellar) surfactant concentration. We here study the interaction between the cationic dye rhodamine 6G (R6G) with surfactants of different charge types: anionic SDS, cationic CTAB, and nonionic Tx 100 using absorption and emission spectroscopy. We identify that R6G forms dimeric aggregates at a premicellar concentration of SDS. Formation of aggregates is also confirmed from classical simulation measurements. CTAB and Tx 100 do not form any such aggregate, presumably owing to unfavorable electrostatic interactions. For a molecular-level understanding, we perform two-photon absorption (TPA) spectroscopy for the same systems. TPA allows us to calculate the two-photon absorption cross section and subsequently the change in the dipole moment (Δμ) between ground and excited states of the dye. We calculate the Δμ and observe that it passes through a maximum at a surfactant concentration half of the critical micelle concentration of SDS. This observation imparts support to earlier quantum mechanical calculation, which infers deviation from the parallel orientation of the dye during surfactant-induced aggregation. We extended our measurements and varied the carbon chain length of the anionic surfactant, and we found that all of them exhibit a maximum in Δμ, while their relative magnitude is dependent on the surfactant carbon chain length.
Rhodamine group of molecules are widely used dyes for imaging of biological molecules. Application of these dyes however includes a limitation that these molecules absorb in the visible range of the spectrum, which does not fall in the 'biologically transparent window' (BTW). Two photon absorption (TPA) process could come up with an alternate solution to this as these dyes could be excited in the near infrared (NIR) window to extract similar information. To validate this we have investigated TPA cross section (TPACS, σ) of two rhodamine dyes, namely Rhodamine 6G (R6G), Rhodamine B (RhB), site selectively bound with a model protein, bovine serum albumin (BSA), by exciting at 800 nm. Two photon spectroscopy and imaging confirms the binding of the dye to the protein. The decreases in TPACS with increasing temperature at a fixed BSA concentration excellently follows the temperature induced structural transition of BSA as the protein transforms from a molten globule to unfolded conformation beyond 60 °C, which has previously been established through circular dichroism (CD) measurements. The thus established resemblance in TPACS and CD measurement trends thus strongly affirms the suitability of TPA process in protein imaging and as an alternative marker to tracking its conformational transformations using NIR radiation.
The excited-state
proton transfer (ESPT) rate of photo-acids in
a confined medium depends on several physical parameters of the immediate
environment. We introduce a new parameter in the form of charge type at the interface
of reverse micellar (RM) systems to modulate the ESPT rate. We investigate
the ESPT reaction of
d
-luciferin in mixed RM systems composed
of nonionic polyoxyethylene(5)nonylphenylether (Igepal CO-520) with
cationic didodecyldimethylammonium bromide (DDAB) and anionic sodium
bis(2-ethylhexyl)sulfosuccinate (AOT) in cyclohexane (Cy) at different
mole fractions of Ig (
X
Ig
) and fixed hydration.
ESPT is feeble in AOT RM, whereas it is favorable in the other two
RMs. Addition of Ig is observed to facilitate ESPT in AOT RM linearly,
whereas in DDAB, it shows a synergistic effect. The various physical
parameters of water in the mixed RM water pool have been investigated
using dynamic light scattering, Fourier transform infrared, and time-resolved
fluorescence spectroscopy measurements to underline the ESPT mechanism
in these mixed RMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.