Tropical cities are more susceptible to the suggested fall outs from projected global warming scenarios as they are located in the Torrid Zone and growing at rapid rates. Therefore, research on the mitigation of urban heat island (UHI) effects in tropical cities has attained much significance and increased immensely over recent years. The UHI mitigation strategies commonly used for temperate cities need to be examined in the tropical context since the mechanism of attaining a surface energy balance in the tropics is quite different from that in the mid-latitudes. The present paper evaluates the performance of four different mitigation strategies to counterbalance the impact of UHI phenomena for climate resilient adaptation in the Kolkata Metropolitan Area (KMA), India. This has been achieved by reproducing the study sites, selected from three different urban morphologies of open low-rise, compact low-rise and mid-rise residential areas, using ENVI-met V 4.0 and simulating the effects of different mitigation strategies-cool pavement, cool roof, added urban vegetation and cool city (a combination of the three former strategies), in reducing the UHI intensity. Simulation results show that at a diurnal scale during summer, the green city model performed best at neighborhood level to reduce air temperature (Ta) by 0.7 °C, 0.8 °C and 1.1 °C, whereas the cool city model was the most effective strategy to reduce physiologically equivalent temperature (PET) by 2.8°-3.1 °C, 2.2°-2.8 °C and 2.8°-2.9 °C in the mid-rise, compact low-rise and open low-rise residential areas, respectively. It was observed that (for all the built environment types) vegetation played the most significant role in determining surface energy balance in the study area, compared to cool roofs and cool pavements. This study also finds that irrespective of building environments, tropical cities are less sensitive to the selected strategies of UHI mitigation than their temperate counter parts, which can be attributed to the difference in magnitude of urbanness.
In the context of changing farming practices, particularly with increasing use of chemical fertilizers, the present paper attempts to statistically model the implications of such input intensification for growth of agricultural production and yield and crop diversification in Hooghly district of the Indian state of West Bengal. Understanding the issue is very important for sustainable growth of the sector in the long-run. The paper uses secondary data collected from the Bureau of Applied Economics and Statistics of the Government of West Bengal for the period 1989-2010. The paper shows that greater use of chemical fertilizers has no strong correlation with growth of agricultural production and yield. It is also found that agricultural production has fluctuated during this period possibly due to improper use of N-P-K over the years exceeding the assimilative capacity of soil. Further, excessive use of chemical fertilizers has also resulted in over extraction of ground water in the area. It is, therefore, suggested that efforts should be made towards deeper understanding of inherent potentials as well as limitations of soil and designing the farming strategies accordingly. In addition, formation of farming groups and promotion of organic farming should be explored to facilitate sustainable growth of the sector. Decentralized participatory planning can play a crucial role in this regard.
The mass accumulation of population in the larger cities of India has led to accelerated and unprecedented peripheral urban expansion over the last few decades. This rapid peripheral growth is characterized by an uncontrolled, low density, fragmented and haphazard patchwork of development popularly known as urban sprawl. The Kolkata Metropolitan Area (KMA) has been one of the fastest-growing metropolitan areas in India and is experiencing rampant suburbanization and peripheral expansion. Hence, understanding urban growth and its dynamics in these rapidly changing environments is critical for city planners and resource managers. Furthermore, understanding urban expansion and urban growth patterns are essential for achieving inclusive and sustainable urbanization as defined by the United Nations in the Sustainable Development Goals (e.g., SDGs, 11.3). The present research attempts to quantify and model the urban growth dynamics of large and diverse metropolitan areas with a distinct methodology considering the case of KMA. In the study, land use and land cover (LULC) maps of KMA were prepared for three different years (i.e., for 1996, 2006, and 2016) through the classification of Landsat imagery using a support vector machine (SVM) classification approach. Then, change detection analysis, landscape metrics, a concentric zone approach, and Shannon’s entropy approach were applied for spatiotemporal assessment and quantification of urban growth in KMA. The achieved classification accuracies were found to be 89.75%, 92.00%, and 92.75%, with corresponding Kappa values of 0.879, 0.904, and 0.912 for 1996, 2006, and 2016, respectively. It is concluded that KMA has been experiencing typical urban sprawl. The peri-urban areas (i.e., KMA-rural) are growing rapidly, and are characterized by leapfrogging and fragmented built-up area development, compared to the central KMA (i.e., KMA-urban), which has become more compact in recent years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.