The behavioural and endocrine responses to a 10 min white noise stress have been characterized in female virgin and undisturbed lactating Sprague-Dawley rats. Animals were continuously video-taped and frequent blood samples were collected using an automated sampling system. Noise stress caused hypothalamo-pituitary-adrenal (HPA) activation, as indicated by a rapid increase in plasma corticosterone and ACTH in the virgins: corticosterone concentrations peaked 20 min after initiation of the stress before declining rapidly back to basal concentrations. In contrast, noise stress had no significant effect on either plasma corticosterone or ACTH concentrations in the lactating animals. However, 72 h after weaning the corticosterone response of the ex-lactating rats was of comparable magnitude, but longer duration to that seen in the virgins. Plasma prolactin concentrations were significantly higher in the lactating animals and declined in response to the noise whereas, a transient but reproducible increase was seen in the virgin group. In situ hybridization revealed a significantly lower basal expression of CRF mRNA in the paraventricular nucleus of lactating rats as compared to the virgins, but noise stress had no further effect. Virgin animals showed behavioural responses to the stress, including an increase in the total activity, exploratory behaviours (rearing) and displacement behaviours (grooming). Lactating animals also showed behavioural responses to the noise, but their activities were principally directed towards the pups. These data show that although lactating rats showed normal behavioural reactivity to a psychological stress they showed no statistically significant activation of the HPA axis, suggesting a dissociation of behavioural and neuroendocrine responses to this mild stress.
In-situ hybridization histochemistry was used to measure corticotrophin-releasing factor mRNA and proenkephalin A mRNA in the paraventricular nucleus (PVN), and pro-opiomelanocortin (POMC) mRNA in the anterior pituitary of the rat. Levels of message were determined at 1, 2, 4 and 8 h after exposure to a variety of physical and psychological stresses. Corticotrophin-releasing factor mRNA in the PVN and POMC mRNA in the anterior pituitary increased in response to i.p. hypertonic saline, restraint and swim stress but not to cold stress. Proenkephalin A mRNA was raised only in response to the physical stress of i.p. injection of hypertonic saline. These results suggest that different afferent pathways and hypothalamic neurotransmitters may be involved in mediating the hypothalamic response to different physical and psychological stresses.
In male New Zealand white rabbits, it was shown that oxytocin but not vasopressin concentrations in plasma were markedly raised after ejaculation. In male Wistar rats, oxytocin infused into the internal carotid artery reduced the number of intromissions made before ejaculation but had no other significant effect. Infusion of oxytocin into the third ventricle increased the latencies to the first mount and intromission and lengthened post-ejaculatory refractory periods. It is suggested that oxytocin released into the periphery during coitus, while not essentially involved in ejaculation, may exert effects on the genital periphery. Behavioural effects of centrally administered oxytocin suggest that it may play a role in the neural mechanisms underlying post-ejaculatory refractoriness.
The posterodorsal medial amygdala (MePD) is a neural site in the limbic brain involved in regulating emotional and sexual behaviours. There is, however, limited information available on the specific neuronal cell type in the MePD functionally mediating these behaviours in rodents. The recent discovery of a significant kisspeptin neurone population in the MePD has raised interest in the possible role of kisspeptin and its cognate receptor in sexual behaviour. The present study therefore tested the hypothesis that the MePD kisspeptin neurone population is involved in regulating attraction towards opposite sex conspecifics, sexual behaviour, social interaction and the anxiety response by selectively stimulating these neurones using the novel pharmacosynthetic DREADDs (designer receptors exclusively activated by designer drugs) technique. Adult male Kiss‐Cre mice received bilateral stereotaxic injections of a stimulatory DREADD viral construct (AAV‐hSyn‐DIO‐hM3D(Gq)‐mCherry) targeted to the MePD, with subsequent activation by i.p. injection of clozapine‐N‐oxide (CNO). Socio‐sexual behaviours were assessed in a counter‐balanced fashion after i.p. injection of either saline or CNO (5 mg kg‐1). Selective activation of MePD kisspeptin neurones by CNO significantly increased the time spent by male mice in investigating an oestrous female, as well as the duration of social interaction. Additionally, after CNO injection, the mice appeared less anxious, as indicated by a longer exploratory time in the open arms of the elevated plus maze. However, levels of copulatory behaviour were comparable between CNO and saline‐treated controls. These data indicate that DREADD‐induced activation of MePD kisspeptin neurones enhances both sexual partner preference in males and social interaction and also decreases anxiety, suggesting a key role played by MePD kisspeptin in sexual motivation and social behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.