Identification and confirmation of bioactive small-molecule targets is a crucial, often decisive step both in academic and pharmaceutical research. Through the development and availability of several new experimental techniques, target identification is, in principle, feasible, and the number of successful examples steadily grows. However, a generic methodology that can successfully be applied in the majority of the cases has not yet been established. Herein we summarize current methods for target identification of small molecules, primarily for a chemistry audience but also the biological community, for example, the chemist or biologist attempting to identify the target of a given bioactive compound. We describe the most frequently employed experimental approaches for target identification and provide several representative examples illustrating the state-of-the-art. Among the techniques currently available, protein affinity isolation using suitable small-molecule probes (pulldown) and subsequent mass spectrometric analysis of the isolated proteins appears to be most powerful and most frequently applied. To provide guidance for rapid entry into the field and based on our own experience we propose a typical workflow for target identification, which centers on the application of chemical proteomics as the key step to generate hypotheses for potential target proteins.
Current therapies for common types of cancer such as renal cell cancer are often ineffective and unspecific, and novel pharmacological targets and approaches are in high demand. Here we show the unexpected possibility for the rapid and selective killing of renal cancer cells through activation of calcium-permeable nonselective transient receptor potential canonical (TRPC) calcium channels by the sesquiterpene (-)-englerin A. This compound was found to be a highly efficient, fast-acting, potent, selective, and direct stimulator of TRPC4 and TRPC5 channels. TRPC4/5 activation through a high-affinity extracellular (-)-englerin A binding site may open up novel opportunities for drug discovery aimed at renal cancer.
In biology-oriented synthesis the underlying scaffold classes of natural products selected in evolution are used to define biologically relevant starting points in chemical structure space for the synthesis of compound collections with focused structural diversity. Here we describe a highly enantioselective synthesis of natural-product-inspired 3,3'-pyrrolidinyl spirooxindoles--which contain an all-carbon quaternary centre and three tertiary stereocentres. This synthesis takes place by means of an asymmetric Lewis acid-catalysed 1,3-dipolar cycloaddition of an azomethine ylide to a substituted 3-methylene-2-oxindole using 1-3 mol% of a chiral catalyst formed from a N,P-ferrocenyl ligand and CuPF(6)(CH(3)CN)(4). Cellular evaluation has identified a molecule that arrests mitosis, induces multiple microtubule organizing centres and multipolar spindles, causes chromosome congression defects during mitosis and inhibits tubulin regrowth in cells. Our findings support the concept that compound collections based on natural-product-inspired scaffolds constructed with complex stereochemistry will be a rich source of compounds with diverse bioactivity.
Highlights d Development of the GLUT-1-3-selective inhibitor Glutor to suppress glucose uptake d Glutor potently induces cell death in 2D and 3D cancer cell culture d Glutor-induced hypoglycemia upregulates GLUT-1/-3 d Glutor and GLS inhibitor CB-839 synergistically inhibit cell growth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.