A meshless method based on the local Petrov-Galerkin approach is proposed for plate bending analysis with material containing functionally graded magnetoelectroelastic properties. Material properties are considered to be continuously varying along the plate thickness. Axial symmetry of geometry and boundary conditions for a circular plate reduces the original 3D boundary value problem into a 2D problem in axial cross section. Both stationary and transient dynamic conditions for a pure mechanical load are considered in this article. The local weak formulation is employed on circular subdomains in the axial cross section. Subdomains surrounding nodes are randomly spread over the analyzed domain. The test functions are taken as unit step functions in derivation of the local integral equations (LIEs). The moving least-squares (MLS) method is adopted for the approximation of the physical quantities in the LIEs. After performing the spatial integrations, one obtains a system of ordinary differential equations for certain nodal unknowns. That system is solved numerically by the Houbolt finite-difference scheme as a time-stepping method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.