Up to 30% of all hospital admissions and health-care costs may be attributable to alcohol abuse. Ethanol, its oxidative metabolites, acetaldehyde and ROS (reactive oxygen species), non-oxidative metabolites of alcohol [e.g. FAEEs (fatty acid ethyl esters)] and the ethanol-water competition mechanism are all involved in the deregulation of glycoconjugate (glycoprotein, glycolipid and proteoglycan) metabolic processes including biosynthesis, modification, transport, secretion, elimination and catabolism. An increasing number of new alcohol biomarkers that are the result of alcohol-induced glycoconjugate metabolic errors have appeared in the literature. Glycoconjugate-related alcohol markers are involved in, or are a product of, altered glycoconjugate metabolism, e.g. CDT (carbohydrate-deficient transferrin), SA (sialic acid), plasma SIJ (SA index of apolipoprotein J), CETP (cholesteryl ester transfer protein), β-HEX (β-hexosaminidase), dolichol, EtG (ethyl glucuronide) etc. Laboratory tests based on changes in glycoconjugate metabolism are useful in settings where the co-operativeness of the patient is impaired (e.g. driving while intoxicated) or when a history of alcohol use is not available (e.g. after trauma). In clinical practice, glycoconjugate markers of alcohol use/abuse let us distinguish alcoholic from non-alcoholic tissue damage, having important implications for the treatment and management of diseases.
Our report is the first to show that acute ingestion of relatively large, yet tolerable dose of alcohol, significantly disturbs salivary antimicrobial defense system. Reduced lysozyme level and decreased peroxidase activity may contribute to increased susceptibility to infections, when acute alcohol intake coincides with exposure to pathogens.
There is a lot of data suggesting that modifications of cell glycoconjugates may be important in progression of cancer. In the present work we studied activities of lysosomal exoglycosidases: beta-hexosaminidase and its isoenzymes A and B, beta-galactosidase and alpha-mannosidase, in human gliomas. Enzyme activity was determined spectrophotometrically based on the release of p-nitrophenol from p-nitrophenyl-derivative of appropriate sugars. The activities of the exoglycosidases tested were significantly higher in malignant glial tumors than in control tissue (normal brain tissue) and non-glial tumors. The highest activities of exoglycosidases were observed in high-grade gliomas, and a positive correlation of enzyme activities and degree of malignancy was noted. Our results suggest that lysosomal exoglycosidases may participate in the progression and dynamical development of glial tumors.
BackgroundThere have been inconsistent conclusions regarding salivary abnormalities and their effect on oral health of Juvenile Idiopathic Arthritis (JIA) patients. The purpose of the study was to evaluate the flow rate and selected biochemical parameters of unstimulated whole saliva in correlation to oral health in JIA children.MethodsThirty-four JIA patients and 34 age- and sex-matched controls not affected by JIA (C) were divided into two groups: with mixed and permanent dentition. DMFT/dmft, gingival and simplified oral hygiene indices were evaluated. Salivary flow rate, pH, lysozyme, lactoferrin, salivary protein concentrations and peroxidase activity were assessed.ResultsThe salivary flow rate was significantly lower in the total JIA group (0.41 ml/min) as compared with the C (0.51 ml/min) and in the permanent dentition of JIA children (0.43 ml/min) as compared with the C (0.61 ml/min). A significantly lower pH was observed in total (6.74), mixed (6.7) and permanent (6.76) dentition of JIA groups in comparison to the C (7.25, 7.21, 7.28 respectively). The specific activity of peroxidase was significantly higher in JIA patients (total 112.72 IU/l, mixed dentition 112.98 IU/l, permanent dentition 112.5 IU/l) than in the C group (total 70.03 IU/l, mixed dentition 71.83 IU/l, permanent dentition 68.61 IU/l). The lysozyme concentration in JIA patients (total and permanent dentition groups) was significantly higher than in the C group. There were no significant differences in lactoferrin and salivary protein concentrations. There were no statistically significant differences in oral status between JIA patients and C, respectively: DMFT = 5.71, dmft = 3.73, OHI-S = 0.95, GI = 0.25 and DMFT 5.71, dmft = 3.73, OHI-S = 0.85, GI = 0.24. The specific activity of peroxidase in the unstimulated whole saliva was inversely correlated with the GI index, whereas the salivary lysozyme concentration was inversely correlated with the dmft index in JIA patients.ConclusionIn the course of JIA occur a reduction of the resting salivary flow rate and a decrease of saliva pH. In spite of this, no differences in the clinical oral status between the JIA children population and the control group were found. The mobilisation of salivary peroxidase and lysozyme contributes to the maintenance of healthy oral tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.