The paper presents a vector algebraic method for the displacement and force analysis of the five-rod wheel suspension mechanism, used as a rear suspension in some modern cars. Displacement equations are derived by using the solutions of the vector tetrahedron equations obtained as the closure or constraint equations for spatial multi-loop mechanisms. The method gives the possibility of reducing the system of constraint equations from the original five to two. The resultant equations are expressed in recursive notation, which isrelatively concise in form and convenient for programming, providing a very efficient and accurate algorithm. The system of force and torque equilibrium equations is solved in an explicit way. Flexible joints with experimentally determined linearized compliance matrices are taken into consideration, leading to an algorithm for elastokinematic analysis of the mechanism. Graphical illustration of the results is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.