An Arg present in the third transmembrane domain of all rhodopsin-like G-protein-coupled receptors is required for efficient signal transduction. Mutation of this Arg in the gonadotropin-releasing hormone receptor to Gln, His, or Lys abolished or severely impaired agoniststimulated inositol phosphate generation, consistent with Arg having a role in receptor activation. To investigate the contribution of the surrounding structural domain in the actions of the conserved Arg, an integrated microdomain modeling and mutagenesis approach has been utilized. The gonadotropin-releasing hormone (GnRH) 1 receptor is a member of the rhodopsin-like G-protein-coupled receptor (GPCR) family (1, 2). These heptahelical proteins include the visual opsins and various receptors for neurotransmitters, peptides, and glycoproteins. Activation of these receptors by their diverse agonists is associated with conformational changes in the receptor that facilitate a signal-propagating interaction with G-proteins (3). These conformational changes can involve relative movement of helices, as reported for rhodopsin (4, 5) and/or rotation of the helices as found in a constitutively active adrenergic receptor (6).Sequence alignment of GPCRs shows that certain amino acids are highly conserved at corresponding positions within the putative transmembrane domains (TMD) (7). Transitions among receptor conformations may reflect dynamic changes in side chain interactions within the receptor. Two of these conserved residues have been studied by reciprocal mutation in the GnRH and serotonin receptors, and the results suggest that the TMD 2 and 7 side chains have an interdependent role in receptor activation (8, 9). Most likely several other conserved side chains also interact to form the skeleton required for the conformational rearrangements that accompany the transition between inactive and active receptor states.The elucidation of the intramolecular interactions and conformational changes underlying receptor activation is hindered by the absence of high resolution structural data for any GPCR. The available low resolution projection maps of rhodopsin do not allow inferences about specific side chain interactions (10, 11). A prevalent approach to investigate structure-function relations of GPCRs is to introduce structural perturbations via site-directed mutagenesis and to evaluate their effect on receptor phenotype in binding and signal transduction assays (12). However, determining the phenotype of mutant receptors does not lead to an unequivocal interpretation concerning the structural basis of that phenotype (13).Molecular modeling has facilitated the integration of experimental observations and biophysical data into a mechanistic scheme for receptor structure and function (12,14). Structural and functional details of ligand binding (15,16) and receptor activation by agonist complexing (8,17) and by constitutively activating mutations (18) have been simulated in such models. The receptor models can thus provide a rationalization of current experime...
The decapeptide gonadotropin-releasing hormone controls reproductive function via interaction with a heptahelical G protein-coupled receptor. Because of molecular model of the receptor predicts that Lys121 in the third transmembrane helix contributes to the binding pocket, the function of this side chain was studied by site-directed mutagenesis. Substitution of Arg at this position preserved high affinity agonist binding, whereas Gln at this position reduced binding below the limits of detection. Leu and Asp at this locus abolished both binding and detectable signal transduction. The EC50 of concentration-response curves for coupling to phosphatidyl inositol hydrolysis obtained with the Gln121 receptor was more than 3 orders of magnitude higher than that obtained for the wild-type receptor. In order to determine whether the increased EC50 obtained with this mutant reflects an altered receptor affinity, the effect of decreases in wild-type receptor density on concentration-response curves was determined by irreversible antagonism. Progressively decreasing the concentration of the wild-type receptor increased the EC50 values obtained to a maximal level of 2.4 +/- 0.2 nM. Comparison of this value with the EC50 of 282 +/- 52 nM observed with the Gln121 receptor mutant indicates that the agonist affinity for this mutant is reduced more than 100-fold. In contrast, antagonist had comparable high affinities for the wild-type, Arg121, and Gln121 mutants. The results indicate that a charge-strengthened hydrogen bond donor is required at this locus for high affinity agonist binding but not for high affinity antagonist binding.
During transmembrane signaling by Escherichia coli Tsr, changes in ligand occupancy in the periplasmic serine-binding domain promote asymmetric motions in a four-helix transmembrane bundle. Piston displacements of the signaling TM2 helix in turn modulate the HAMP bundle on the cytoplasmic side of the membrane to control receptor output signals to the flagellar motors. A five-residue control cable joins TM2 to the HAMP AS1 helix and mediates conformational interactions between them. To explore control cable structural features important for signal transmission, we constructed and characterized all possible single amino acid replacements at the Tsr control cable residues. Only a few lesions abolished Tsr function, indicating that the chemical nature and size of the control cable side chains are not individually critical for signal control. Charged replacements at I214 mimicked the signaling consequences of attractant or repellent stimuli, most likely through aberrant structural interactions of the mutant side chains with the membrane interfacial environment. Prolines at residues 214 to 217 also caused signaling defects, suggesting that the control cable has helical character. However, proline did not disrupt function at G213, the first control cable residue, which might serve as a structural transition between the TM2 and AS1 helix registers. Hydrophobic amino acids at S217, the last control cable residue, produced attractant-mimic effects, most likely by contributing to packing interactions within the HAMP bundle. These results suggest a helix extension mechanism of Tsr transmembrane signaling in which TM2 piston motions influence HAMP stability by modulating the helicity of the control cable segment.Chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs) mediate the adaptive locomotor behaviors of many bacterial and archaeal cells (1,70,75). The MCPs of Escherichia coli are the best studied and offer tractable models for elucidating molecular mechanisms of transmembrane signaling (26, 27). The serine (Tsr), aspartate (Tar), ribose/galactose (Trg), and dipeptide/pyrimidine (Tap) transmembrane receptors all contain periplasmic ligand-binding domains that communicate stimulus information to a cytoplasmic kinase control domain (Fig. 1). Changes in ligand occupancy promote small (ϳ2-Å) displacements of the membrane-spanning TM2 helix in one subunit of the receptor homodimer (18,25,43). This asymmetric piston motion impinges on a HAMP domain at the cytoplasmic side of the membrane, which translates that conformational input into symmetric structural changes of an extended four-helix bundle to modulate activity of the receptor-associated CheA autokinase (26, 46). Attractant (ATT) stimuli promote inward TM2 displacements that inhibit CheA activity, and repellent (REP) stimuli promote outward piston movements that stimulate CheA activity (25). The kinase-off state favors counterclockwise (CCW) rotation of the cell's flagellar motors, producing forward swimming, and the kinase-on state promotes clockwise (CW) ...
The transmembrane Tsr protein of Escherichia coli mediates chemotactic responses to environmental serine gradients. Serine binds to the periplasmic domain of the homodimeric Tsr molecule, promoting a small inward displacement of one transmembrane helix (TM2). TM2 piston displacements, in turn, modulate the structural stability of the Tsr-HAMP domain on the cytoplasmic side of the membrane to control the autophosphorylation activity of the signaling CheA kinase bound to the membranedistal cytoplasmic tip of Tsr. A five-residue control cable segment connects TM2 to the AS1 helix of HAMP and transmits stimulus and sensory adaptation signals between them. To explore the possible role of control cable helicity in transmembrane signaling by Tsr, we characterized the signaling properties of mutant receptors with various control cable alterations. An allalanine control cable shifted Tsr output toward the kinase-on state, whereas an all-glycine control cable prevented Tsr from reaching either a fully on or fully off output state. Restoration of the native isoleucine (I214) in these synthetic control cables largely alleviated their signaling defects. Single amino acid replacements at Tsr-I214 shifted output toward the kinase-off (L, N, H, and R) or kinase-on (A and G) states, whereas other control cable residues tolerated most amino acid replacements with little change in signaling behavior. These findings indicate that changes in control cable helicity might mediate transitions between the kinase-on and kinase-off states during transmembrane signaling by chemoreceptors. Moreover, the Tsr-I214 side chain plays a key role, possibly through interaction with the membrane interfacial environment, in triggering signaling changes in response to TM2 piston displacements. IMPORTANCEThe Tsr protein of E. coli mediates chemotactic responses to environmental serine gradients. Stimulus signals from the Tsr periplasmic sensing domain reach its cytoplasmic kinase control domain through piston displacements of a membrane-spanning helix and an adjoining five-residue control cable segment. We characterized the signaling properties of Tsr variants to elucidate the transmembrane signaling role of the control cable, an element present in many microbial sensory proteins. Both the kinase-on and kinase-off output states of Tsr depended on control cable helicity, but only one residue, I214, was critical for triggering responses to attractant inputs. These findings suggest that signal transmission in Tsr involves modulation of control cable helicity through interaction of the I214 side chain with the cytoplasmic membrane.T he receptor proteins that mediate chemotactic behaviors in motile bacteria offer powerful experimental models for investigating transmembrane signaling mechanisms. The aspartate/ maltose (Tar) and serine (Tsr) chemoreceptors of Escherichia coli, members of the superfamily of methyl-accepting chemotaxis proteins (MCPs), have been studied most extensively in this regard (reviewed in reference 1). Both operate as membrane-...
Theory postulates that dietary specialization in mammalian herbivores is enabled by a specialized set of liver enzymes that process the high concentrations of similar plant secondary metabolites (PSMs) in the diets of specialists. To investigate whether qualitative and quantitative differences in detoxification mechanisms distinguish dietary specialists from generalists, we compared the sequence diversity and gene copy number of detoxification enzymes in two woodrat species: a generalist, the white-throated woodrat (Neotoma albigula) and a juniper specialist, Stephens' woodrat (N. stephensi). We focused on enzymes in the cytochrome P450 subfamily 2B (CYP2B), because previous research suggests this subfamily plays a key role in the processing of PSMs. For both woodrat species, we obtained and sequenced CYP2B cDNA, generated CYP2B phylogenies, estimated CYP2B gene copy number and created a homology model of the active site. We found that the specialist possessed on average ~5 more CYP2B gene copies than the generalist, but the specialist's CYP2B sequences were less diverse. Phylogenetic analysis of putative CYP2B homologs resolved woodrat species as reciprocally monophyletic and suggested evolutionary convergence of distinct homologs on similar key amino acid residues in both species. Homology modelling of the CYP2B enzyme suggests that interspecific differences in substrate preference and function likely result from amino acid differences in the enzyme active site. The characteristics of CYP2B in the specialist, that is greater gene copy number coupled with less sequence variation, are consistent with specialization to a narrow range of dietary toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.