Cross-linked polystyrene particles have applications in many fields such as ion exchange columns, fuel cell membranes, and catalysis, to name a few. Synthesis of these particles in smaller sizes offers various advantages due to the increased specific surface area. Polystyrene nanoparticles having volume-equivalent diameters in the range of 40-60 nm were synthesized using emulsion polymerization. Emulsifier-free synthesis was also employed, yielding particles in the size range of 80-90 nm. Sodium styrene sulfonate (NaSS) was used an emulsifying comonomer, and divinyl benzene (DVB) was used as a cross-linking agent. The average particle diameter increased with increasing DVB concentration in the feed. By increasing the NaSS content in the feed from 4 to 28 wt %, the ion exchange capacity of the cross-linked polystyrene particles increased from 0.05 to 2.2 meq/g. The presence of SO 3 Na groups in the cross-linked polystyrene particles was also confirmed by using FT-IR, and the intensity of the peaks at 1040 and 1182 cm -1 increased with increasing NaSS concentration in the feed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.