The full range of glycoconjugates made up of glycans, or carbohydrate chains, that are covalently joined to lipid or protein molecules is known as the glycome. Glycoconjugates are created, through the process of glycosylation (vary in length, glycan sequence, and the connections that connect them). The creation of therapies can now take advantage of new knowledge about the structure and operation of the glycome, which may enhance our capacity to control inflammation and immune responses, maximize the efficacy of therapeutic antibodies, and enhance immune responses to cancer. These instances highlight the promise of the young discipline of “glycomedicine.” The prevalence of glycoconjugates in nature and their significance in various biological processes have prompted the development of numerous synthesizing techniques for these molecules. Today, synthetic glycoconjugates are utilized to address a wide range of biological concerns linked to glycoconjugates. This study seeks to update earlier reviews on the topic as well as gather and compile the most recent developments in the fields of glycopeptide, glycoprotein, and glycolipid synthesis. Finally, we hope that this study may stimulate fruitful research in this significant area of medicinal chemistry by highlighting the triumphs and shortcomings of prior research.
Polysaccharides demonstrate a wide diversity in their structural features as well as physicochemical properties owing to a variety of functional groups, chemical structure and a broad array of molecular mass. The most important feature of modified polysaccharides is their amphiphilic character which allows the application of these conjugates as an emulsifier, modifiers of surface in liposomes and micro/ nanoparticles, viscosity modifiers and drug delivery vehicles. Recently, the lipophilic modification of polysaccharides, which serve as a nano-container for water-insoluble or poorly water-soluble drugs, has gained attention in the biomedical applications due to their ability to form self-assembled nanoparticles. The natural polysaccharides are readily available, stable, biodegradable, economical, safe and biocompatible. It is difficult to synthesize compounds with such diversity in characteristics. In recent decades, many researchers have taken interest in polysaccharides and their derivatives for use in nanoparticulate systems. This review focuses on the chemical modification of mono and polysaccharides and the mechanisms involved in the formation of polysaccharide-based nanoparticles
Background: One of the most important fields of biomedical engineering study nowadays is targeted drug delivery to specific cells. A drug's therapeutic efficacy can be improved and optimised by tightly targeting it to a pathophysiologically essential tissue architecture. The goal of this research is to develop saccharide conjugates for the targeted delivery of Atenolol, a -blocker.
Methods: Galactose (monosaccharide), pectin (polysaccharide), and chitosan were chosen as the saccharides (polysaccharide). By grafting Atenolol with the modified saccharides, the conjugates were created. Spectroscopic and thermal studies were used to describe the chemically changed saccharides conjugates. H9c2 cell lines were used to conduct drug release research and cellular uptake studies. To investigate cytotoxicity, a brine shrimp lethality test was done.
Results: The outcomes exhibit that Atenolol-modified saccharide conjugates can productively convey the medication to the target.
Conclusion: It can be inferred that the improvement of saccharide-drug conjugates can be a compelling methodology for targeting cardiovascular medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.