Posttranslational modifications, including acetylation and deacetylation of histones and other proteins, modulate hormone action. In Tribolium castaneum TcA cells, Trichostatin A, a histone deacetylase (HDAC) inhibitor, mimics juvenile hormone (JH) in inducing JH response genes (e.g., Kr-h1), suggesting that HDACs may be involved in JH action. To test this hypothesis, we identified genes coding for HDACs in T. castaneum and studied their function. Knockdown of 12 HDAC genes showed variable phenotypes; the most severe phenotype was detected in insects injected with double-stranded RNA targeting HDAC1 (dsHDAC1). The dsHDAC1-injected insects showed arrested growth and development and eventually died. Application of JH analogs hydroprene to T. castaneum larvae and JH III to TcA cells suppressed HDAC1 expression. Sequencing of RNA isolated from control and dsHDAC1-injected larvae identified 1,720 differentially expressed genes, of which 1,664 were up-regulated in dsHDAC1-treated insects. The acetylation levels of core histones were increased in TcA cells exposed to dsHDAC1 or JH III. ChIP assays performed using histone H2BK5ac antibodies showed an increase in acetylation in the Kr-h1 promoter region of cells exposed to JH III or dsHDAC1. Overexpression or knockdown of HDAC1, SIN3, or both resulted in a decrease or increase in Kr-h1 mRNA levels and its promoter activity, respectively. Overexpression of the JH receptor Methoprene tolerant (Met) was unable to induce Kr-h1 in the presence of HDAC1 or SIN3. These data suggest that epigenetic modifications influence JH action by modulating acetylation levels of histones and by affecting the recruitment of proteins involved in the regulation of JH response genes.
BackgroundJuvenile hormones (JH) and ecdysteroids control postembryonic development in insects. They serve as valuable targets for pest management. Hence, understanding the molecular mechanisms of their action is of crucial importance. CREB-binding protein (CBP) is a universal transcriptional co-regulator. It controls the expression of several genes including those from hormone signaling pathways through co-activation of many transcription factors. However, the role of CBP during postembryonic development in insects is not well understood. Therefore, we have studied the role of CBP in postembryonic development in Tribolium, a model coleopteran insect.ResultsCBP is ubiquitously expressed in the red flour beetle, Tribolium castaneum. RNA interference (RNAi) mediated knockdown of CBP resulted in a decrease in JH induction of Kr-h1 gene expression in Tribolium larvae and led to a block in their development. Moreover, the injection of CBP double-stranded RNA (dsRNA) showed lethal phenotypes within 8 days of injection. RNA-seq and subsequent differential gene expression analysis identified CBP target genes in Tribolium. Knockdown of CBP caused a decrease in the expression of 1306 genes coding for transcription factors and other proteins associated with growth and development. Depletion of CBP impaired the expression of several JH response genes (e.g., Kr-h1, Hairy, early trypsin) and ecdysone response genes (EcR, E74, E75, and broad complex). Further, GO enrichment analyses of the downregulated genes showed enrichment in different functions including developmental processes, pigmentation, anatomical structure development, regulation of biological and cellular processes, etc.ConclusionThese data suggest diverse but crucial roles for CBP during postembryonic development in the coleopteran model insect, Tribolium. It can serve as a target for RNAi mediated pest management of this stored product pest.Electronic supplementary materialThe online version of this article (10.1186/s12864-017-4373-3) contains supplementary material, which is available to authorized users.
Post-translational modifications (PTM) such as methylation, acetylation, phosphorylation, and ubiquitination of histones and other proteins regulate expression of genes. The acetylation levels of these proteins are determined by the balance of expression of histone acetyltransferase (HATs) and histone deacetylases (HDACs). We recently reported that class I HDACs (HDAC1 and HDAC3) play important roles in juvenile hormone (JH) suppression of metamorphosis in the red flour beetle, Tribolium castaneum. Here, we report on the function of a single class IV HDAC member, HDAC11. Injection of dsRNA targeting T. castaneum HDAC11 gene into newly molted last instar larvae induced knockdown of the target gene and arrested larval development and prevented metamorphosis into the pupal stage. Dark melanized areas were detected in larvae that showed developmental arrest and mortality. Developmental expression studies showed an increase in HDAC11 mRNA levels beginning at the end of the penultimate larval stage. These higher levels were maintained during the final instar larval and pupal stages. A JH analog, hydroprene, suppressed HDAC11 expression in the larvae. Sequencing of RNA isolated from control and dsHDAC11 injected larvae identified several differentially expressed genes, including those involved in JH action, ecdysone response, and melanization. The acetylation levels of core histones showed an increase in TcA cells exposed to dsHDAC11. Also, an increase in histone H3 acetylation, specifically H3K9, H3K18 and H3K27, were detected in HDAC11 knockdown larvae. These studies report the function of HDAC11 in insects other than Drosophila for the first time and show that HDAC11 influences the acetylation levels of histones and expression of multiple genes involved in T. castaneum larval development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.