We recently described a maize mutant caused by an insertion of a Helitron type transposable element (Lal, S.K., Giroux, M.J., Brendel, V., Vallejos, E. and Hannah, L.C., 2003, Plant Cell, 15: 381-391). Here we describe another Helitron insertion in the barren stalk1 gene of maize. The termini of a 6525 bp insertion in the proximal promoter region of the mutant reference allele of maize barren stalk1 gene (ba1-ref) shares striking similarity to the Helitron insertion we reported in the Shrunken-2 gene. This insertion is embedded with pseudogenes that differ from the pseudogenes discovered in the mutant Shrunken-2 insertion. Using the common terminal ends of the mutant insertions as a query, we discovered other Helitron insertions in maize BAC clones. Based on the comparison of the insertion site and PCR amplified genomic sequences, these elements inserted between AT dinucleotides. These putative non-autonomous Helitron insertions completely lacked sequences similar to RPA (replication protein A) and DNA Helicases reported in other species. A blastn analysis indicated that both the 5' and 3' termini of Helitrons are repeated in the maize genome. These data provide strong evidence that Helitron type transposable elements are active and may have played an essential role in the evolution and expansion of the maize genome.
A U1-snRNP--specific 70K (U1-70K) protein is intricately involved in both constitutive and alternative splicing of pre-mRNAs. Here, we report cDNA and cognate genomic sequences of the U1-70K gene of maize and rice. The maize and rice U1-70K genes bear strong similarity to the Arabidopsis gene and each encode three transcripts in roots and shoots. Alternative splicing produces two transcripts from each gene in addition to the mRNA encoding the wild type protein. In both cases, selective inclusion of intron 6 or utilization of a cryptic donor site within intron 6 sequence generates the two alternatively spliced transcripts. This evolutionary conservation of splicing patterns between different plant species suggests an important biological function for alternative splicing in the expression of U1-70K gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.