CRISPR systems have emerged as transformative tools for altering genomes in living cells with unprecedented ease, inspiring keen interest in increasing their specificity for perfectly matched targets. We have developed a novel approach for improving specificity by incorporating chemical modifications in guide RNAs (gRNAs) at specific sites in their DNA recognition sequence (‘guide sequence’) and systematically evaluating their on-target and off-target activities in biochemical DNA cleavage assays and cell-based assays. Our results show that a chemical modification (2′-O-methyl-3′-phosphonoacetate, or ‘MP’) incorporated at select sites in the ribose-phosphate backbone of gRNAs can dramatically reduce off-target cleavage activities while maintaining high on-target performance, as demonstrated in clinically relevant genes. These findings reveal a unique method for enhancing specificity by chemically modifying the guide sequence in gRNAs. Our approach introduces a versatile tool for augmenting the performance of CRISPR systems for research, industrial and therapeutic applications.
The success of cell replacement therapy for diabetes depends on the availability and generation of an adequate number of islets, preferably from an autologous origin. Stem cells are now being probed for the generation of physiologically competent, insulin-producing cells. In this investigation, we explored the potential of adipose tissue-derived stem cells (ASCs) to differentiate into pancreatic hormone-expressing islet-like cell aggregates (ICAs). We initiated ASC culture from epididymal fat pads of Swiss albino mice to obtain mesenchymal cells, murine epididymal (mE)-ASCs. Subsequent single-cell cloning resulted in a homogeneous cell population with a CD29+CD44+Sca-1+ surface antigen expression profile. We formulated a 10-day differentiation protocol to generate insulin-expressing ICAs from mE-ASCs by progressively changing the differentiation cocktail on day 1, day 3, and day 5. Our stage-specific approach successfully differentiated mesodermic mE-ASCs into definitive endoderm (cells expressing Sox17, Foxa2, GATA-4, and cytokeratin [CK]-19), then into pancreatic endoderm (cells expressing pancreatic and duodenal homeobox [PDX]-1, Ngn3, NeuroD, Pax4, and glucose transporter 2), and finally into cells expressing pancreatic hormones (insulin, glucagon, somatostatin). Fluorescence-activated cell sorting analysis showed that day 5 ICAs contained 64.84% ± 7.03% PDX-1+ cells, and in day 10 mature ICAs, 48.17% ± 3% of cells expressed C-peptide. Day 10 ICAs released C-peptide in a glucose-dependent manner, exhibiting in vitro functionality. Electron microscopy of day 10 ICAs revealed the presence of numerous secretory granules within the cell cytoplasm. Calcium alginate-encapsulated day 10 ICAs (1,000–1,200), when transplanted i.p. into streptozotocin-induced diabetic mice, restored normoglycemia within 2 weeks. The data presented here demonstrate the feasibility of using ASCs as a source of autologous stem cells to differentiate into the pancreatic lineage. Disclosure of potential conflicts of interest is found at the end of this article.
Smooth muscle cells (SMCs) and endothelial cells (ECs) are typically derived separately, with low efficiencies, from human pluripotent stem cells (hPSCs). The concurrent generation of these cell types might lead to potential applications in regenerative medicine to model, elucidate, and eventually treat vascular diseases. Here we report a robust two-step protocol that can be used to simultaneously generate large numbers of functional SMCs and ECs from a common proliferative vascular progenitor population via a two-dimensional culture system. We show here that coculturing hPSCs with OP9 cells in media supplemented with vascular endothelial growth factor, basic fibroblast growth factor, and bone morphogenetic protein 4 yields a higher percentage of CD31 + CD34+ cells on day 8 of differentiation. Upon exposure to endothelial differentiation media and SM differentiation media, these vascular progenitors were able to differentiate and mature into functional endothelial cells and smooth muscle cells, respectively. Furthermore, we were able to expand the intermediate population more than a billionfold to generate sufficient numbers of ECs and SMCs in parallel for potential therapeutic transplantations. STEM CELLS TRANSLATIONAL MEDICINE 2014;3:91-97
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.